{"title":"Impact damage detection on carbon fiber reinforced polymer tube by a mutual differential Bobbin probe","authors":"Wei Guo , Lihua Guo , Hao Xu , Weijun Zhu , Shejuan Xie , Zhenmao Chen , Toshiyuki Takagi , Tetsuya Uchimoto","doi":"10.1016/j.compositesa.2025.108806","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon fiber reinforced polymer (CFRP) tube is utilized in large aperture deployable space antennas for its superior material properties. Impact damages on CFRP tube can significantly impair the load-bearing capacity of the tubes. Efficient and convenient non-destructive evaluation method of impact damage in CFRP tubes is essential. This study develops a high-frequency eddy current testing (HF ECT) finite element analysis method that accounts for both the dielectric properties and anisotropic conductivity of CFRP, and establishes a fiber bundle model that explains the operating mechanism of displacement current and eddy currents in CFRP, offering guidance for predicting HF ECT signals in CFRP. A high signal-to-noise ratio mutual differential Bobbin probe is developed specifically for detecting impact damage in CFRP tubes. A HF ECT experiment system is constructed and validated using impact damages induced by a force hammer, demonstrating the effectiveness of method and probe, and the invisible impact defect is detected successfully.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"193 ","pages":"Article 108806"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25001009","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon fiber reinforced polymer (CFRP) tube is utilized in large aperture deployable space antennas for its superior material properties. Impact damages on CFRP tube can significantly impair the load-bearing capacity of the tubes. Efficient and convenient non-destructive evaluation method of impact damage in CFRP tubes is essential. This study develops a high-frequency eddy current testing (HF ECT) finite element analysis method that accounts for both the dielectric properties and anisotropic conductivity of CFRP, and establishes a fiber bundle model that explains the operating mechanism of displacement current and eddy currents in CFRP, offering guidance for predicting HF ECT signals in CFRP. A high signal-to-noise ratio mutual differential Bobbin probe is developed specifically for detecting impact damage in CFRP tubes. A HF ECT experiment system is constructed and validated using impact damages induced by a force hammer, demonstrating the effectiveness of method and probe, and the invisible impact defect is detected successfully.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.