Slope stability time evolution of a shallow landslide restored by Soil and Water Bioengineering (SWBE) techniques: A case study in Northwest Tuscany (Italy)

IF 3.9 2区 环境科学与生态学 Q1 ECOLOGY Ecological Engineering Pub Date : 2025-02-28 DOI:10.1016/j.ecoleng.2025.107570
Federico Preti , Andrea Dani , Yamuna Giambastiani , Emanuele Giachi
{"title":"Slope stability time evolution of a shallow landslide restored by Soil and Water Bioengineering (SWBE) techniques: A case study in Northwest Tuscany (Italy)","authors":"Federico Preti ,&nbsp;Andrea Dani ,&nbsp;Yamuna Giambastiani ,&nbsp;Emanuele Giachi","doi":"10.1016/j.ecoleng.2025.107570","DOIUrl":null,"url":null,"abstract":"<div><div>The well-known extreme flood event occurred on 19 June 1996 in Versilia, north-western Tuscany, Italy, causing an impressive number of landslides and debris flows, dramatic floods and 15 fatalities. The Tuscany Region financed Soil and Water Bioengineering (SWBE) interventions to restore slope stability and mitigate soil erosion. The Pomezzana landslide was the greatest one restored by such kind of Nature-Based Solutions (NBS) in 1998, applied in Tuscany for the first time.</div><div>The study presents the 2023 landslide monitoring surveys, concerning the vegetation evolution state and the slope stability conditions of two different situations: AdS1-SWBE restored landslide and AdS2-unrestored landslide. The root systems of the main tree species present (chestnut, alder, and hornbeam) have been characterised and used to evaluate the effects of vegetation on slope stability according to the historical monitoring 1998–2013-2023.</div><div>The Root Area Ratio (RAR) values obtained in the field, and therefore soil cohesion values also considering the deterioration of the wooden crib wall, drove us to calculate the Factor of Safety (FS) through SSAP 2010™ software. Various scenarios of slope stability were evaluated with the infiltration depth obtained with the landslide back analysis with the event rainfall obtaining the time evolution of the slope stability. The study confirms the technical effectiveness of the slope stabilisation of the SWBE interventions, as in the restoration of superficial landslides triggered by rainfall the research also shows the positive effects of vegetation evolution over slope stability and ecological succession, triggering natural native species succession with increasing soil reinforcement. The results show the SWBE restoration project hastened the slope stabilisation process through the combination of vegetation development and SWBE techniques.</div></div>","PeriodicalId":11490,"journal":{"name":"Ecological Engineering","volume":"214 ","pages":"Article 107570"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925857425000588","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The well-known extreme flood event occurred on 19 June 1996 in Versilia, north-western Tuscany, Italy, causing an impressive number of landslides and debris flows, dramatic floods and 15 fatalities. The Tuscany Region financed Soil and Water Bioengineering (SWBE) interventions to restore slope stability and mitigate soil erosion. The Pomezzana landslide was the greatest one restored by such kind of Nature-Based Solutions (NBS) in 1998, applied in Tuscany for the first time.
The study presents the 2023 landslide monitoring surveys, concerning the vegetation evolution state and the slope stability conditions of two different situations: AdS1-SWBE restored landslide and AdS2-unrestored landslide. The root systems of the main tree species present (chestnut, alder, and hornbeam) have been characterised and used to evaluate the effects of vegetation on slope stability according to the historical monitoring 1998–2013-2023.
The Root Area Ratio (RAR) values obtained in the field, and therefore soil cohesion values also considering the deterioration of the wooden crib wall, drove us to calculate the Factor of Safety (FS) through SSAP 2010™ software. Various scenarios of slope stability were evaluated with the infiltration depth obtained with the landslide back analysis with the event rainfall obtaining the time evolution of the slope stability. The study confirms the technical effectiveness of the slope stabilisation of the SWBE interventions, as in the restoration of superficial landslides triggered by rainfall the research also shows the positive effects of vegetation evolution over slope stability and ecological succession, triggering natural native species succession with increasing soil reinforcement. The results show the SWBE restoration project hastened the slope stabilisation process through the combination of vegetation development and SWBE techniques.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Engineering
Ecological Engineering 环境科学-工程:环境
CiteScore
8.00
自引率
5.30%
发文量
293
审稿时长
57 days
期刊介绍: Ecological engineering has been defined as the design of ecosystems for the mutual benefit of humans and nature. The journal is meant for ecologists who, because of their research interests or occupation, are involved in designing, monitoring, or restoring ecosystems, and can serve as a bridge between ecologists and engineers. Specific topics covered in the journal include: habitat reconstruction; ecotechnology; synthetic ecology; bioengineering; restoration ecology; ecology conservation; ecosystem rehabilitation; stream and river restoration; reclamation ecology; non-renewable resource conservation. Descriptions of specific applications of ecological engineering are acceptable only when situated within context of adding novelty to current research and emphasizing ecosystem restoration. We do not accept purely descriptive reports on ecosystem structures (such as vegetation surveys), purely physical assessment of materials that can be used for ecological restoration, small-model studies carried out in the laboratory or greenhouse with artificial (waste)water or crop studies, or case studies on conventional wastewater treatment and eutrophication that do not offer an ecosystem restoration approach within the paper.
期刊最新文献
The process and driving mechanism of abandoned terraces in mountain region at the watershed scale Thermal patterns on eco-engineered coastal infrastructure depend on topographic complexity and spatial scale Editorial Board The impact of channel sinuosity and hydrodynamics on fish-habitat suitability in high-gradient meandering rivers Lake pollution control and restoration: A critical review of strategies and measures for plateau lakes in Southwestern China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1