{"title":"Investigating gas-solid flow hydrodynamics in spouted beds with a draft tube using XCT: The role of tube types, gas velocity, and diameter","authors":"Zhong Xiang , Xi Chen , Theodore J. Heindel","doi":"10.1016/j.powtec.2025.120850","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the gas-solid flow hydrodynamics in spouted beds with various types of draft tubes using X-ray computed tomography (XCT). We investigate the effects of different draft tube types (non-porous, porous, and open-sided), gas velocities, and tube diameters on the spouting behavior. XCT allows for the noninvasive, three-dimensional reconstruction of time-average voidage distribution within the spouted beds. Our findings indicate that draft tube types and diameters significantly influence the minimum spouting velocity, voidage distribution, and particle flow patterns. Porous and open-sided tubes demonstrate unique gas-solid flow characteristics, such as improved particle circulation and enhanced radial mixing, compared to non-porous tubes. This study provides critical insights into the mechanisms of spouting jet stability and the optimization of draft tube designs for industrial applications.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"456 ","pages":"Article 120850"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591025002451","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the gas-solid flow hydrodynamics in spouted beds with various types of draft tubes using X-ray computed tomography (XCT). We investigate the effects of different draft tube types (non-porous, porous, and open-sided), gas velocities, and tube diameters on the spouting behavior. XCT allows for the noninvasive, three-dimensional reconstruction of time-average voidage distribution within the spouted beds. Our findings indicate that draft tube types and diameters significantly influence the minimum spouting velocity, voidage distribution, and particle flow patterns. Porous and open-sided tubes demonstrate unique gas-solid flow characteristics, such as improved particle circulation and enhanced radial mixing, compared to non-porous tubes. This study provides critical insights into the mechanisms of spouting jet stability and the optimization of draft tube designs for industrial applications.
期刊介绍:
Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests:
Formation and synthesis of particles by precipitation and other methods.
Modification of particles by agglomeration, coating, comminution and attrition.
Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces).
Packing, failure, flow and permeability of assemblies of particles.
Particle-particle interactions and suspension rheology.
Handling and processing operations such as slurry flow, fluidization, pneumatic conveying.
Interactions between particles and their environment, including delivery of particulate products to the body.
Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters.
For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.