Selective contact self-assembled molecules for high-performance perovskite solar cells

IF 42.9 Q1 ELECTROCHEMISTRY eScience Pub Date : 2025-03-01 DOI:10.1016/j.esci.2024.100329
Huan Bi , Jiaqi Liu , Liang Wang , Tuo Liu , Zheng Zhang , Qing Shen , Shuzi Hayase
{"title":"Selective contact self-assembled molecules for high-performance perovskite solar cells","authors":"Huan Bi ,&nbsp;Jiaqi Liu ,&nbsp;Liang Wang ,&nbsp;Tuo Liu ,&nbsp;Zheng Zhang ,&nbsp;Qing Shen ,&nbsp;Shuzi Hayase","doi":"10.1016/j.esci.2024.100329","DOIUrl":null,"url":null,"abstract":"<div><div>This review provides a comprehensive overview of the utilization of self-assembled monolayers (SAMs) in perovskite solar cells (PSCs), with a specific focus on their potential as hole transport layers (HTLs). Perovskite materials have garnered significant attention in photovoltaic technology owing to their unique optoelectronic properties. SAMs present a promising solution as efficient and stable HTLs by forming well-ordered thin films on transparent conductive oxide surfaces. This review commences with an introduction to the structure and properties of perovskite materials, followed by a discussion on the operational principles and compositions of functional layers in PSCs. It subsequently delves into the structure, preparation methodologies, and applications of SAMs in PSCs, highlighting their role in enhancing cell efficiency as HTLs. We also discuss their application as electron transport layers. The paper concludes by exploring the potential integration of SAMs into commercial PSC production processes and suggesting future research avenues.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 2","pages":"Article 100329"},"PeriodicalIF":42.9000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724001289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

This review provides a comprehensive overview of the utilization of self-assembled monolayers (SAMs) in perovskite solar cells (PSCs), with a specific focus on their potential as hole transport layers (HTLs). Perovskite materials have garnered significant attention in photovoltaic technology owing to their unique optoelectronic properties. SAMs present a promising solution as efficient and stable HTLs by forming well-ordered thin films on transparent conductive oxide surfaces. This review commences with an introduction to the structure and properties of perovskite materials, followed by a discussion on the operational principles and compositions of functional layers in PSCs. It subsequently delves into the structure, preparation methodologies, and applications of SAMs in PSCs, highlighting their role in enhancing cell efficiency as HTLs. We also discuss their application as electron transport layers. The paper concludes by exploring the potential integration of SAMs into commercial PSC production processes and suggesting future research avenues.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
期刊最新文献
Orbital modulation in platinum-group-metal (PGM) electrocatalysts: An effective approach to boost catalytic performance Strategies of constructing highly stable interfaces with low resistance in inorganic oxide-based solid-state lithium batteries Hydrogel polymer electrolytes toward better zinc-ion batteries: A comprehensive review Development of noble metal-free electrocatalysts towards acidic water oxidation: From fundamental understanding to state-of-the-art catalysts Selective contact self-assembled molecules for high-performance perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1