Peiying Zhang , Enqi Wang , Lizhuang Tan , Neeraj Kumar , Jian Wang , Kai Liu
{"title":"Enhancing task offloading in vehicular networks: A multi-agent cloud-edge-device framework","authors":"Peiying Zhang , Enqi Wang , Lizhuang Tan , Neeraj Kumar , Jian Wang , Kai Liu","doi":"10.1016/j.vehcom.2025.100898","DOIUrl":null,"url":null,"abstract":"<div><div>In vehicular networks, the increasing demand for computational resources often exceeds the capabilities of in-vehicle devices. To address these challenges, we propose a cloud-edge-device collaborative framework integrated with a Multi-Agent Deep Reinforcement Learning (MADRL) algorithm for dynamic optimization of task offloading and resource allocation. Experimental evaluations demonstrate the proposed algorithm's superiority over traditional methods, achieving an 11% reduction in energy consumption and a 23% increase in task completion rate compared to local processing-only strategies, while reducing average task delay by 50% relative to static offloading approaches. The MADRL-based framework not only ensures efficient task distribution but also adapts to fluctuating network conditions, achieving a resource utilization rate of 85%. These findings underscore its potential to enhance performance in intelligent transportation systems by balancing computational efficiency, energy consumption, and task latency.</div></div>","PeriodicalId":54346,"journal":{"name":"Vehicular Communications","volume":"53 ","pages":"Article 100898"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vehicular Communications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214209625000257","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In vehicular networks, the increasing demand for computational resources often exceeds the capabilities of in-vehicle devices. To address these challenges, we propose a cloud-edge-device collaborative framework integrated with a Multi-Agent Deep Reinforcement Learning (MADRL) algorithm for dynamic optimization of task offloading and resource allocation. Experimental evaluations demonstrate the proposed algorithm's superiority over traditional methods, achieving an 11% reduction in energy consumption and a 23% increase in task completion rate compared to local processing-only strategies, while reducing average task delay by 50% relative to static offloading approaches. The MADRL-based framework not only ensures efficient task distribution but also adapts to fluctuating network conditions, achieving a resource utilization rate of 85%. These findings underscore its potential to enhance performance in intelligent transportation systems by balancing computational efficiency, energy consumption, and task latency.
期刊介绍:
Vehicular communications is a growing area of communications between vehicles and including roadside communication infrastructure. Advances in wireless communications are making possible sharing of information through real time communications between vehicles and infrastructure. This has led to applications to increase safety of vehicles and communication between passengers and the Internet. Standardization efforts on vehicular communication are also underway to make vehicular transportation safer, greener and easier.
The aim of the journal is to publish high quality peer–reviewed papers in the area of vehicular communications. The scope encompasses all types of communications involving vehicles, including vehicle–to–vehicle and vehicle–to–infrastructure. The scope includes (but not limited to) the following topics related to vehicular communications:
Vehicle to vehicle and vehicle to infrastructure communications
Channel modelling, modulating and coding
Congestion Control and scalability issues
Protocol design, testing and verification
Routing in vehicular networks
Security issues and countermeasures
Deployment and field testing
Reducing energy consumption and enhancing safety of vehicles
Wireless in–car networks
Data collection and dissemination methods
Mobility and handover issues
Safety and driver assistance applications
UAV
Underwater communications
Autonomous cooperative driving
Social networks
Internet of vehicles
Standardization of protocols.