Yong Li , Yunpeng Guo , Yuwei Zhang , Wei Feng , Kai Zhang , Xin Wang , Fuqian Yang
{"title":"Modeling of diffusion-induced inter-/transgranular cracking in polycrystal NCM particles: Effects of external force and boundary constraints","authors":"Yong Li , Yunpeng Guo , Yuwei Zhang , Wei Feng , Kai Zhang , Xin Wang , Fuqian Yang","doi":"10.1016/j.ijsolstr.2025.113300","DOIUrl":null,"url":null,"abstract":"<div><div>Experimental results have evidenced that appropriate external forces can mitigate structural degradation and damage of active particles during electrochemical cycling of metal-ion batteries. Currently, there are few studies on structural degradation and damage of active particles under concurrent action of diffusion and external loading. Using finite-discrete element method (FDEM), we analyze diffusion-induced cracking in a polycrystal NCM (lithium nickel manganese cobalt oxide) particle under three different configurations: traction-free boundary, rigid confinement to opposite ends, and external loading to opposite ends under constant influx. The numerical results illustrate that appropriate external loading can suppress the nucleation and propagation of cracks induced by the diffusion of solute atoms and retard structural degradation/damage of polycrystal NCM particles. Increasing the amount of solute atoms and applying excessive external loading can promote the nucleation and propagation of cracks in polycrystal NCM particles due to large contact deformation and the deformation induced by the diffusion of solute atoms, which escalates structural degradation/damage of the electrodes in metal-ion batteries.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"313 ","pages":"Article 113300"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768325000861","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Experimental results have evidenced that appropriate external forces can mitigate structural degradation and damage of active particles during electrochemical cycling of metal-ion batteries. Currently, there are few studies on structural degradation and damage of active particles under concurrent action of diffusion and external loading. Using finite-discrete element method (FDEM), we analyze diffusion-induced cracking in a polycrystal NCM (lithium nickel manganese cobalt oxide) particle under three different configurations: traction-free boundary, rigid confinement to opposite ends, and external loading to opposite ends under constant influx. The numerical results illustrate that appropriate external loading can suppress the nucleation and propagation of cracks induced by the diffusion of solute atoms and retard structural degradation/damage of polycrystal NCM particles. Increasing the amount of solute atoms and applying excessive external loading can promote the nucleation and propagation of cracks in polycrystal NCM particles due to large contact deformation and the deformation induced by the diffusion of solute atoms, which escalates structural degradation/damage of the electrodes in metal-ion batteries.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.