Xiang Li , Zujing Zhang , Jiri Zhou , Ruiyong Mao , Hongwei Wu , Xing Liang
{"title":"Numerical and experimental study on the influence of thermal behavior of phase change plate in high temperature and low ventilation speed environment","authors":"Xiang Li , Zujing Zhang , Jiri Zhou , Ruiyong Mao , Hongwei Wu , Xing Liang","doi":"10.1016/j.est.2025.115977","DOIUrl":null,"url":null,"abstract":"<div><div>Against the backdrop of rising energy prices, the rational utilization of energy resources has become a pivotal concern. The effective application of phase change plates constitutes a crucial strategy for achieving this objective. A fundamental aspect of employing phase change plates is the selection of optimal thickness, a process that necessitates meticulous consideration to ensure optimal performance. In this paper, the effects of the external encapsulation material, environment temperature, ventilation speed, and thermal conductivity, melting temperature and latent heat of the internal phase change material on the melting time of the phase change plate were studied by experiments combined with numerical simulations. Subsequently, the relationship between thickness and time is modelled through fitting procedures. The main results are as follows: (1) The melting time of the phase change plate is linearly positively correlated with the thickness of the phase change plate, and the correlation is strong; (2) The effects of encapsulation materials, <em>V</em><sub><em>s</em></sub>, <em>T</em><sub><em>e</em></sub>, <em>T</em><sub>m</sub>, <em>Δr</em> and <em>λ</em> on the melting time of the phase change plate were obtained; (3) The encapsulation material of the phase change plate has little influence on its heat transfer, and cheaper materials can be selected when selecting the encapsulation material; (4) A relationship between the thickness of the phase change plate and the melting time is obtained, and this relationship is related to <em>V</em><sub><em>s</em></sub>, <em>T</em><sub><em>e</em></sub>, <em>T</em><sub>m</sub>, <em>Δr</em> and <em>λ</em>.</div></div>","PeriodicalId":15942,"journal":{"name":"Journal of energy storage","volume":"115 ","pages":"Article 115977"},"PeriodicalIF":8.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of energy storage","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352152X25006905","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Against the backdrop of rising energy prices, the rational utilization of energy resources has become a pivotal concern. The effective application of phase change plates constitutes a crucial strategy for achieving this objective. A fundamental aspect of employing phase change plates is the selection of optimal thickness, a process that necessitates meticulous consideration to ensure optimal performance. In this paper, the effects of the external encapsulation material, environment temperature, ventilation speed, and thermal conductivity, melting temperature and latent heat of the internal phase change material on the melting time of the phase change plate were studied by experiments combined with numerical simulations. Subsequently, the relationship between thickness and time is modelled through fitting procedures. The main results are as follows: (1) The melting time of the phase change plate is linearly positively correlated with the thickness of the phase change plate, and the correlation is strong; (2) The effects of encapsulation materials, Vs, Te, Tm, Δr and λ on the melting time of the phase change plate were obtained; (3) The encapsulation material of the phase change plate has little influence on its heat transfer, and cheaper materials can be selected when selecting the encapsulation material; (4) A relationship between the thickness of the phase change plate and the melting time is obtained, and this relationship is related to Vs, Te, Tm, Δr and λ.
期刊介绍:
Journal of energy storage focusses on all aspects of energy storage, in particular systems integration, electric grid integration, modelling and analysis, novel energy storage technologies, sizing and management strategies, business models for operation of storage systems and energy storage developments worldwide.