Does water-saving irrigation truly conserve water? Yes and No

IF 5.9 1区 农林科学 Q1 AGRONOMY Agricultural Water Management Pub Date : 2025-02-27 DOI:10.1016/j.agwat.2025.109399
Nan Zhao , Xinjun Zheng , Bin Zhang , Shengchuan Tian , Lan Du , Yan Li
{"title":"Does water-saving irrigation truly conserve water? Yes and No","authors":"Nan Zhao ,&nbsp;Xinjun Zheng ,&nbsp;Bin Zhang ,&nbsp;Shengchuan Tian ,&nbsp;Lan Du ,&nbsp;Yan Li","doi":"10.1016/j.agwat.2025.109399","DOIUrl":null,"url":null,"abstract":"<div><div>Irrigation is by far the largest consumer of freshwater, and is thus widely acknowledged as a major contributor to water scarcity. Consequently, water-saving technologies (WST) are considered to be effective in reducing irrigation water use and alleviating water scarcity. However, growing evidence indicates that looking at the larger spatial scale, these technologies may exacerbate water scarcity, particularly in arid regions. This study evaluated the water-saving effect at the field and regional scales based on a water accounting framework for an arid oasis region in Northwest China. The results showed that, with the application of WST, irrigation volume decreased by 1012.95 m³/ha over 20 years, with reduced soil evaporation for 80.4 % of the cropland. However, the perceived water saving gives the misleading impression that overall water use is declining, encouraging farmers to expand irrigated areas in pursuit of higher profits. Our results confirmed that the expansion leads to more water consumption at a regional scale. More importantly, this study highlighted that not all water losses are wasteful. Drainage plays a crucial ecological role in salt leaching and nourishing adjacent desert vegetation. Its significant reduction has occurred alongside noticeable drops in groundwater levels in the oasis-desert ecotone, which has subsequently led to vegetation degradation. These findings provide valuable insights for implementing water-saving measures in arid regions worldwide and serve as a warning that the overuse of WST in such areas could exacerbate water scarcity and ecological crises.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"311 ","pages":"Article 109399"},"PeriodicalIF":5.9000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378377425001131","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Irrigation is by far the largest consumer of freshwater, and is thus widely acknowledged as a major contributor to water scarcity. Consequently, water-saving technologies (WST) are considered to be effective in reducing irrigation water use and alleviating water scarcity. However, growing evidence indicates that looking at the larger spatial scale, these technologies may exacerbate water scarcity, particularly in arid regions. This study evaluated the water-saving effect at the field and regional scales based on a water accounting framework for an arid oasis region in Northwest China. The results showed that, with the application of WST, irrigation volume decreased by 1012.95 m³/ha over 20 years, with reduced soil evaporation for 80.4 % of the cropland. However, the perceived water saving gives the misleading impression that overall water use is declining, encouraging farmers to expand irrigated areas in pursuit of higher profits. Our results confirmed that the expansion leads to more water consumption at a regional scale. More importantly, this study highlighted that not all water losses are wasteful. Drainage plays a crucial ecological role in salt leaching and nourishing adjacent desert vegetation. Its significant reduction has occurred alongside noticeable drops in groundwater levels in the oasis-desert ecotone, which has subsequently led to vegetation degradation. These findings provide valuable insights for implementing water-saving measures in arid regions worldwide and serve as a warning that the overuse of WST in such areas could exacerbate water scarcity and ecological crises.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Agricultural Water Management
Agricultural Water Management 农林科学-农艺学
CiteScore
12.10
自引率
14.90%
发文量
648
审稿时长
4.9 months
期刊介绍: Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.
期刊最新文献
From weather data to water fluxes simulation in Mediterranean greenhouses through a combined climate and hydrological modelling approach Optimized length and application rate of chopped straw for alfalfa production in ridge-furrow rainwater-harvesting in semi-arid regions in China Optimized fertilizer management strategy based on ridge–furrow planting pattern enhances dryland wheat yield and water utilization on the Loess Plateau Synthesizing regional irrigation data using machine learning – Towards global upscaling via metamodeling Automated irrigation of apple trees based on dendrometer sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1