{"title":"Design of Fiber-Longitudinal Optical Power Monitor","authors":"Takeo Sasai;Sze Yun Set;Shinji Yamashita","doi":"10.1109/JLT.2024.3487862","DOIUrl":null,"url":null,"abstract":"This paper presents analytical results on the accuracy of fiber-longitudinal optical power monitoring (LPM) at arbitrary positions. To quantify the accuracy, the position-wise variance and power-profile SNR of LPM are defined and analyzed, yielding formulas for these metrics. Using these metrics, we show that various designs and performance predictions of LPM for a given link and estimation conditions are possible in a unified manner. Specifically, the required SNR to detect a given loss event is first presented. Based on this relation, the design parameters of LPM, such as the sample size and optical power required to detect the loss, are explicitly determined. The performance such as the detectable limit of loss events at individual positions and maximum dynamic range are also specified. These results can be used as a basis for establishing a design principle of LPM.","PeriodicalId":16144,"journal":{"name":"Journal of Lightwave Technology","volume":"43 5","pages":"2192-2202"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10737366","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Lightwave Technology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10737366/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents analytical results on the accuracy of fiber-longitudinal optical power monitoring (LPM) at arbitrary positions. To quantify the accuracy, the position-wise variance and power-profile SNR of LPM are defined and analyzed, yielding formulas for these metrics. Using these metrics, we show that various designs and performance predictions of LPM for a given link and estimation conditions are possible in a unified manner. Specifically, the required SNR to detect a given loss event is first presented. Based on this relation, the design parameters of LPM, such as the sample size and optical power required to detect the loss, are explicitly determined. The performance such as the detectable limit of loss events at individual positions and maximum dynamic range are also specified. These results can be used as a basis for establishing a design principle of LPM.
期刊介绍:
The Journal of Lightwave Technology is comprised of original contributions, both regular papers and letters, covering work in all aspects of optical guided-wave science, technology, and engineering. Manuscripts are solicited which report original theoretical and/or experimental results which advance the technological base of guided-wave technology. Tutorial and review papers are by invitation only. Topics of interest include the following: fiber and cable technologies, active and passive guided-wave componentry (light sources, detectors, repeaters, switches, fiber sensors, etc.); integrated optics and optoelectronics; and systems, subsystems, new applications and unique field trials. System oriented manuscripts should be concerned with systems which perform a function not previously available, out-perform previously established systems, or represent enhancements in the state of the art in general.