{"title":"BandFocusNet: A Lightweight Model for Motor Imagery Classification of a Supernumerary Thumb in Virtual Reality","authors":"Haneen Alsuradi;Joseph Hong;Alireza Sarmadi;Robert Volcic;Hanan Salam;S. Farokh Atashzar;Farshad Khorrami;Mohamad Eid","doi":"10.1109/OJEMB.2025.3537760","DOIUrl":null,"url":null,"abstract":"<italic>Objective:</i> Human movement augmentation through supernumerary effectors is an emerging field of research. However, controlling these effectors remains challenging due to issues with agency, control, and synchronizing movements with natural limbs. A promising control strategy for supernumerary effectors involves utilizing electroencephalography (EEG) through motor imagery (MI) functions. In this work, we investigate whether MI activity associated with a supernumerary effector could be reliably differentiated from that of a natural one, thus addressing the concern of concurrency. Twenty subjects were recruited to participate in a two-fold experiment in which they observed movements of natural and supernumerary thumbs, then engaged in MI of the observed movements, conducted in a virtual reality setting. <italic>Results:</i> A lightweight deep-learning model that accounts for the temporal, spatial and spectral nature of the EEG data is proposed and called BandFocusNet, achieving an average classification accuracy of 70.9% using the leave-one-subject-out cross validation method. The trustworthiness of the model is examined through explainability analysis, and influential regions-of-interests are cross-validated through event-related-spectral-perturbation (ERSPs) analysis. Explainability results showed the importance of the right and left frontal cortical regions, and ERSPs analysis showed an increase in the delta and theta powers in these regions during the MI of the natural thumb but not during the MI of the supernumerary thumb. <italic>Conclusion:</i> Evidence in the literature indicates that such activation is observed during the MI of natural effectors, and its absence could be interpreted as a lack of embodiment of the supernumerary thumb.","PeriodicalId":33825,"journal":{"name":"IEEE Open Journal of Engineering in Medicine and Biology","volume":"6 ","pages":"305-311"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10869342","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of Engineering in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10869342/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Human movement augmentation through supernumerary effectors is an emerging field of research. However, controlling these effectors remains challenging due to issues with agency, control, and synchronizing movements with natural limbs. A promising control strategy for supernumerary effectors involves utilizing electroencephalography (EEG) through motor imagery (MI) functions. In this work, we investigate whether MI activity associated with a supernumerary effector could be reliably differentiated from that of a natural one, thus addressing the concern of concurrency. Twenty subjects were recruited to participate in a two-fold experiment in which they observed movements of natural and supernumerary thumbs, then engaged in MI of the observed movements, conducted in a virtual reality setting. Results: A lightweight deep-learning model that accounts for the temporal, spatial and spectral nature of the EEG data is proposed and called BandFocusNet, achieving an average classification accuracy of 70.9% using the leave-one-subject-out cross validation method. The trustworthiness of the model is examined through explainability analysis, and influential regions-of-interests are cross-validated through event-related-spectral-perturbation (ERSPs) analysis. Explainability results showed the importance of the right and left frontal cortical regions, and ERSPs analysis showed an increase in the delta and theta powers in these regions during the MI of the natural thumb but not during the MI of the supernumerary thumb. Conclusion: Evidence in the literature indicates that such activation is observed during the MI of natural effectors, and its absence could be interpreted as a lack of embodiment of the supernumerary thumb.
期刊介绍:
The IEEE Open Journal of Engineering in Medicine and Biology (IEEE OJEMB) is dedicated to serving the community of innovators in medicine, technology, and the sciences, with the core goal of advancing the highest-quality interdisciplinary research between these disciplines. The journal firmly believes that the future of medicine depends on close collaboration between biology and technology, and that fostering interaction between these fields is an important way to advance key discoveries that can improve clinical care.IEEE OJEMB is a gold open access journal in which the authors retain the copyright to their papers and readers have free access to the full text and PDFs on the IEEE Xplore® Digital Library. However, authors are required to pay an article processing fee at the time their paper is accepted for publication, using to cover the cost of publication.