{"title":"Fabrication of Gold Nanoparticle-Masked ITO Nanopillars Using Argon Plasma Etching: Utilization and Application in the Thin c-Si Flexible Solar Cell","authors":"Arijit Bardhan Roy","doi":"10.1109/TPS.2025.3533101","DOIUrl":null,"url":null,"abstract":"Fabrication procedure and utilization of gold nanoparticles (NPs)-masked indium tin oxide (ITO) nanopillars using argon plasma etching was reported in this article. As we know that due to lack of substrate thickness, some fractions of photons are not absorbed by thin crystalline silicon solar cells. This issue may be answered by reported ITO nanopillar geometry embedded on top of the device provided by multiple bounces and super scattering of light. Further, this type of nanostructuring happened only on top of the anti-reflection coating (ARC), so it will be incapable to add on any surface recombination of generated carriers. In this work, the author applied this nanopillar geometry on top of the thin silicon heterojunction solar cell (p-type crystalline thin substrate with n-type amorphous layer) using Au-masked Argon plasma etching and some noticeable enhancement of short circuit current (approximately 50%) and output efficiency (more than 30%) was achieved compared to flat ITO coated cells. These values established the utilization of ITO nanopillars as an anti-reflective coating on thin c-Si solar cells through this reported study and these results also validated by electric field and integrated reflection-based profiles received from finite element method (FEM)-based simulation studies. Finally, at the end of this study, author prolifically realized thin c-Si-based solar cell with <inline-formula> <tex-math>$20~\\pm ~5~\\mu $ </tex-math></inline-formula> m substrate thickness and an effective light management design offered by ITO nanopillars.","PeriodicalId":450,"journal":{"name":"IEEE Transactions on Plasma Science","volume":"53 2","pages":"206-212"},"PeriodicalIF":1.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Plasma Science","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10870864/","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Fabrication procedure and utilization of gold nanoparticles (NPs)-masked indium tin oxide (ITO) nanopillars using argon plasma etching was reported in this article. As we know that due to lack of substrate thickness, some fractions of photons are not absorbed by thin crystalline silicon solar cells. This issue may be answered by reported ITO nanopillar geometry embedded on top of the device provided by multiple bounces and super scattering of light. Further, this type of nanostructuring happened only on top of the anti-reflection coating (ARC), so it will be incapable to add on any surface recombination of generated carriers. In this work, the author applied this nanopillar geometry on top of the thin silicon heterojunction solar cell (p-type crystalline thin substrate with n-type amorphous layer) using Au-masked Argon plasma etching and some noticeable enhancement of short circuit current (approximately 50%) and output efficiency (more than 30%) was achieved compared to flat ITO coated cells. These values established the utilization of ITO nanopillars as an anti-reflective coating on thin c-Si solar cells through this reported study and these results also validated by electric field and integrated reflection-based profiles received from finite element method (FEM)-based simulation studies. Finally, at the end of this study, author prolifically realized thin c-Si-based solar cell with $20~\pm ~5~\mu $ m substrate thickness and an effective light management design offered by ITO nanopillars.
期刊介绍:
The scope covers all aspects of the theory and application of plasma science. It includes the following areas: magnetohydrodynamics; thermionics and plasma diodes; basic plasma phenomena; gaseous electronics; microwave/plasma interaction; electron, ion, and plasma sources; space plasmas; intense electron and ion beams; laser-plasma interactions; plasma diagnostics; plasma chemistry and processing; solid-state plasmas; plasma heating; plasma for controlled fusion research; high energy density plasmas; industrial/commercial applications of plasma physics; plasma waves and instabilities; and high power microwave and submillimeter wave generation.