Remote Hawking-Moss instanton and the Lorentzian path integral

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy Journal of High Energy Physics Pub Date : 2025-02-27 DOI:10.1007/JHEP02(2025)187
Daiki Saito, Naritaka Oshita
{"title":"Remote Hawking-Moss instanton and the Lorentzian path integral","authors":"Daiki Saito,&nbsp;Naritaka Oshita","doi":"10.1007/JHEP02(2025)187","DOIUrl":null,"url":null,"abstract":"<p>The Hawking-Moss (HM) bounce solution implies that the tunneling amplitude between vacua is uniquely determined by the vacuum energy at the initial vacuum and the top of a potential barrier, regardless of the field distance between them ∆<i>ϕ</i>. This implausible conclusion was carefully discussed in [E. J. Weinberg, Phys. Rev. Lett. 98, 251303, (2007)], and it was concluded that the conventional HM amplitude is not reliable for a transition to the top of distant local maxima (hereinafter referred to as the remote HM transition). We revisit this issue and study the impact of the quantum tunneling effect on the remote HM transition. We demonstrate that the amplitude for such a distant transition is indeed smaller than the conventional HM amplitude by employing the Lorentzian path integral in a simple setup. We consider a linear potential, which allows for analytic treatments, and evaluate the up-tunneling probability of a homogeneous scalar field in de Sitter spacetime. The Picard-Lefschetz theory is employed to identify the relevant Lefschetz thimble, representing the relevant tunneling trajectory. We then compare the resulting transition amplitude with the conventional HM amplitude. We find that when the field separation |∆<i>ϕ</i>| is larger, the quantum-tunneling amplitude, estimated by our Lorentzian path integral, is smaller than that of the conventional HM amplitude. This implies that the transition amplitude may be significantly suppressed if the thermal interpretation is not applicable and the quantum-tunneling effect is dominant for the remote HM transition.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 2","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP02(2025)187.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP02(2025)187","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The Hawking-Moss (HM) bounce solution implies that the tunneling amplitude between vacua is uniquely determined by the vacuum energy at the initial vacuum and the top of a potential barrier, regardless of the field distance between them ∆ϕ. This implausible conclusion was carefully discussed in [E. J. Weinberg, Phys. Rev. Lett. 98, 251303, (2007)], and it was concluded that the conventional HM amplitude is not reliable for a transition to the top of distant local maxima (hereinafter referred to as the remote HM transition). We revisit this issue and study the impact of the quantum tunneling effect on the remote HM transition. We demonstrate that the amplitude for such a distant transition is indeed smaller than the conventional HM amplitude by employing the Lorentzian path integral in a simple setup. We consider a linear potential, which allows for analytic treatments, and evaluate the up-tunneling probability of a homogeneous scalar field in de Sitter spacetime. The Picard-Lefschetz theory is employed to identify the relevant Lefschetz thimble, representing the relevant tunneling trajectory. We then compare the resulting transition amplitude with the conventional HM amplitude. We find that when the field separation |∆ϕ| is larger, the quantum-tunneling amplitude, estimated by our Lorentzian path integral, is smaller than that of the conventional HM amplitude. This implies that the transition amplitude may be significantly suppressed if the thermal interpretation is not applicable and the quantum-tunneling effect is dominant for the remote HM transition.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
期刊最新文献
One-loop thermal radiation exchange in gravitational wave power spectrum Scale and conformal invariance in 2d σ-models, with an application to \(\mathcal{N}\) = 4 supersymmetry Higher-derivative supersymmetric effective field theories Computing real-time quantum path integrals on Sewed, almost-Lefschetz thimbles Self-duality from twisted cohomology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1