A Physics-Informed Neural Network-Based Transient Overvoltage Magnitude Prediction Method for Renewable Energy Stations Under DC Blocking Scenarios

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Generation Transmission & Distribution Pub Date : 2025-02-28 DOI:10.1049/gtd2.70030
Guangyao Wang, Jun Liu, Jiacheng Liu, Xiaoming Liu, Tao Ding, Xianbo Ke, Chong Ren
{"title":"A Physics-Informed Neural Network-Based Transient Overvoltage Magnitude Prediction Method for Renewable Energy Stations Under DC Blocking Scenarios","authors":"Guangyao Wang,&nbsp;Jun Liu,&nbsp;Jiacheng Liu,&nbsp;Xiaoming Liu,&nbsp;Tao Ding,&nbsp;Xianbo Ke,&nbsp;Chong Ren","doi":"10.1049/gtd2.70030","DOIUrl":null,"url":null,"abstract":"<p>Large-scale power systems typically require long-distance transmission of electrical energy, and high-voltage direct current (HVDC) technology is a commonly used high-capacity means of connecting power sources to load centres. When a blocking fault occurs in an HVDC transmission system based on line commutated converters (LCC), the sending-end system is prone to transient overvoltage (TOV) risks. This is especially severe in systems with large-scale renewable energy integration, where excessive TOV can lead to widespread disconnection of renewable energy units, seriously threatening the safe and stable operation of the power system. Therefore, predicting the TOV magnitude in renewable energy stations (RES) under DC blocking (DCB) scenarios is of great importance for maintaining system stability and facilitating emergency control decisions. This paper first derives an analytical expression for the TOV magnitude at critical nodes in the system caused by DCB faults. Subsequently, an analytical formula is developed to characterize the relationship between the multiple renewable energy stations short circuit ratio (MRSCR) and the transient voltage rise (TVR) at the point of common coupling (PCC) of RES. Based on this, a physics-informed neural network-based transient overvoltage magnitude prediction (PINN-TOMP) method for RES under DCB scenarios is proposed. The method introduces a regularization term for MRSCR into the loss function to ensure that the PINN model adheres to the physical laws and constraints governing the power system, thereby enhancing the prediction accuracy. Finally, the proposed method was tested on a real regional power system in China, and the results validated its effectiveness.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70030","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70030","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale power systems typically require long-distance transmission of electrical energy, and high-voltage direct current (HVDC) technology is a commonly used high-capacity means of connecting power sources to load centres. When a blocking fault occurs in an HVDC transmission system based on line commutated converters (LCC), the sending-end system is prone to transient overvoltage (TOV) risks. This is especially severe in systems with large-scale renewable energy integration, where excessive TOV can lead to widespread disconnection of renewable energy units, seriously threatening the safe and stable operation of the power system. Therefore, predicting the TOV magnitude in renewable energy stations (RES) under DC blocking (DCB) scenarios is of great importance for maintaining system stability and facilitating emergency control decisions. This paper first derives an analytical expression for the TOV magnitude at critical nodes in the system caused by DCB faults. Subsequently, an analytical formula is developed to characterize the relationship between the multiple renewable energy stations short circuit ratio (MRSCR) and the transient voltage rise (TVR) at the point of common coupling (PCC) of RES. Based on this, a physics-informed neural network-based transient overvoltage magnitude prediction (PINN-TOMP) method for RES under DCB scenarios is proposed. The method introduces a regularization term for MRSCR into the loss function to ensure that the PINN model adheres to the physical laws and constraints governing the power system, thereby enhancing the prediction accuracy. Finally, the proposed method was tested on a real regional power system in China, and the results validated its effectiveness.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
期刊最新文献
A Physics-Informed Neural Network-Based Transient Overvoltage Magnitude Prediction Method for Renewable Energy Stations Under DC Blocking Scenarios Optimal User-Side Energy Arbitrage Strategy in Electricity Market With Accurate Battery Model Using Benders Decomposition Analytical Identification Method of Generalized Short-Circuit Ratio Using Phasor Measurement Units A Novel Sliding Mode Control Strategy for VSG-Based Inverters with Disturbance Estimation Frequency Dynamical Behaviour and Frequency Equilibrium Point of Multi-VSC Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1