{"title":"Pseudomonas Species Isolated From Lotus Nodules Are Genetically Diverse and Promote Plant Growth","authors":"Yu-Hsiang Yu, Julian Kurtenbach, Duncan Crosbie, Andreas Brachmann, Macarena Marín Arancibia","doi":"10.1111/1462-2920.70066","DOIUrl":null,"url":null,"abstract":"<p>Nodules harbour microbial communities composed of rhizobia and other lower-abundance bacteria. These non-rhizobial bacteria can promote plant growth. However, their genomic diversity and how this relates to their plant growth-promoting traits remain poorly investigated. Here, we isolated 14 <i>Pseudomonas</i> strains from the nodules of <i>Lotus</i> plants, sequenced their genomes, analysed their genomic and phylogenetic diversity, and assessed their ability to promote plant growth. We identified five distinct species, including a novel species named <i>Pseudomonas monachiensis</i> sp. nov., with strain PLb12A<sup>T</sup>, as the type strain. Genome analysis of these nodule-isolated <i>Pseudomonas</i> revealed an abundance of genes associated to plant growth-promoting traits, especially auxin-related genes, compared to closely related type strains. In accordance, most nodule-isolated <i>Pseudomonas</i> strains enhanced shoot growth of <i>Lotus burttii</i>, while only some promoted root growth or early onset of root hair proliferation. However, none of the strains significantly affected the ability to form nodules. Overall, our findings highlight the genotypic diversity and the plant growth-promoting potential of nodule-isolated <i>Pseudomonas</i> and underscore their possible applications in mixed inocula with rhizobia.</p>","PeriodicalId":11898,"journal":{"name":"Environmental microbiology","volume":"27 3","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1462-2920.70066","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1462-2920.70066","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nodules harbour microbial communities composed of rhizobia and other lower-abundance bacteria. These non-rhizobial bacteria can promote plant growth. However, their genomic diversity and how this relates to their plant growth-promoting traits remain poorly investigated. Here, we isolated 14 Pseudomonas strains from the nodules of Lotus plants, sequenced their genomes, analysed their genomic and phylogenetic diversity, and assessed their ability to promote plant growth. We identified five distinct species, including a novel species named Pseudomonas monachiensis sp. nov., with strain PLb12AT, as the type strain. Genome analysis of these nodule-isolated Pseudomonas revealed an abundance of genes associated to plant growth-promoting traits, especially auxin-related genes, compared to closely related type strains. In accordance, most nodule-isolated Pseudomonas strains enhanced shoot growth of Lotus burttii, while only some promoted root growth or early onset of root hair proliferation. However, none of the strains significantly affected the ability to form nodules. Overall, our findings highlight the genotypic diversity and the plant growth-promoting potential of nodule-isolated Pseudomonas and underscore their possible applications in mixed inocula with rhizobia.
期刊介绍:
Environmental Microbiology provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens