{"title":"Mining coral-derived terpene synthases and mechanistic studies of the coral biflorane synthase","authors":"Bao Chen, Jingjing Mao, Kangwei Xu, Lijun Liu, Wei Lin, Yue-Wei Guo, Ruibo Wu, Chengyuan Wang, Baofu Xu","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Biflorane diterpenoids are unique natural products often seen in marine animals. Recent studies have reported a small number of biflorane synthases. However, the catalytic mechanism and structural basis for biflorane formation remain unclear. To address these issues, we conducted genome mining of terpene synthases from the sea whip coral <i>Paramuricea clavata</i>, resulting in the discovery of a biflorane synthase <i>Pc</i>TS1. We performed a series of isotope labeling, crystallography, quantum mechanics/molecular mechanics calculations, and mutagenesis studies toward <i>Pc</i>TS1 to investigate the mechanism. Isotopic labeling studies, together with calculations, elucidate a cascade of 1,10-cyclization, 1,3-hydride shift, 1,6-cyclization, 1,2-hydride shift, 2,6-cyclization, cyclopropane ring opening, and deprotonation by the generated pyrophosphate, forming the biflorane scaffold. Crystallography, quantum mechanics/molecular mechanics, and mutagenesis studies confirmed the cascade and produced different terpene scaffolds. Our work demonstrated the mechanism of marine biflorane formation, elucidated the second crystal structure of a coral terpene synthase, and realized the terpene skeleton expansion.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 9","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adv0805","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adv0805","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Biflorane diterpenoids are unique natural products often seen in marine animals. Recent studies have reported a small number of biflorane synthases. However, the catalytic mechanism and structural basis for biflorane formation remain unclear. To address these issues, we conducted genome mining of terpene synthases from the sea whip coral Paramuricea clavata, resulting in the discovery of a biflorane synthase PcTS1. We performed a series of isotope labeling, crystallography, quantum mechanics/molecular mechanics calculations, and mutagenesis studies toward PcTS1 to investigate the mechanism. Isotopic labeling studies, together with calculations, elucidate a cascade of 1,10-cyclization, 1,3-hydride shift, 1,6-cyclization, 1,2-hydride shift, 2,6-cyclization, cyclopropane ring opening, and deprotonation by the generated pyrophosphate, forming the biflorane scaffold. Crystallography, quantum mechanics/molecular mechanics, and mutagenesis studies confirmed the cascade and produced different terpene scaffolds. Our work demonstrated the mechanism of marine biflorane formation, elucidated the second crystal structure of a coral terpene synthase, and realized the terpene skeleton expansion.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.