E-Urea-K-Based PSMA Imaging Served as an Alternative in Assessing Tumor Neovascularization via Targeting CD31.

IF 4.5 2区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Pharmaceutics Pub Date : 2025-02-27 DOI:10.1021/acs.molpharmaceut.4c01252
Lan Wang, Shengnan Ren, Jingjing Lou, Shuai Xue, Pan Zhou, Xiaobei Zheng, Fengling Shan, Xiao Li, Yangchun Chen, Xingdang Liu
{"title":"E-Urea-K-Based PSMA Imaging Served as an Alternative in Assessing Tumor Neovascularization via Targeting CD31.","authors":"Lan Wang, Shengnan Ren, Jingjing Lou, Shuai Xue, Pan Zhou, Xiaobei Zheng, Fengling Shan, Xiao Li, Yangchun Chen, Xingdang Liu","doi":"10.1021/acs.molpharmaceut.4c01252","DOIUrl":null,"url":null,"abstract":"<p><p>To reveal the natural correlation between prostate-specific membrane antigen (PSMA) imaging and tumor neovascularization in prostate cancer and further explore E-urea-K-based PSMA-targeted (EK-PSMA) imaging as a potential indicator of tumor neovascularization, the 22Rv1 mouse models were established and underwent <sup>99m</sup>Tc-HYNIC-ALUG SPECT/CT. Pearson correlation analysis was applied to assess the relationship between tumor tracer uptake and tumor characteristics, including size, glucose metabolism, and cell phenotypes (e.g., Ki-67, VEGF, CD31, and PSMA). Then, molecular docking further identified the key factors of EK-PSMA imaging, specifically related to tumor neovascularization. Finally, animal models with positive and negative PSMA expression (22Rv1, LNCaP, U87, SAOS-2, A549, and ACHN) were subjected to antibody-targeted blockade to verify the role of these key factors in EK-PSMA imaging. The Pearson's <i>r</i> values of tracer uptake correlated with CD31 and tumor size were 0.82 and 0.99, respectively (<i>P</i> < 0.05), and the correlations of tracer uptake with SUV<sub>max</sub>, SUV<sub>mean</sub>, Ki-67, VEGF, and PSMA expressions were 0.47, 0.20, 0.69, -0.65, and 0.20, respectively (all <i>P</i> > 0.05). Molecular docking confirmed the affinity of E-urea-K to PSMA (two sites, binding scores, -5.4 kcal/mol and -6.0 kcal/mol) and CD31 (one site, binding score, -5.1 kcal/mol). The blockade of the CD31 antibody partially reduced the <sup>99m</sup>Tc-HYNIC-ALUG uptake in five other types of tumors (paired <i>t</i> test, <i>P</i> = 0.0478). The Pearson's <i>r</i> value of CD31 staining and tracer uptake prior to the antibody blockade was 0.84 (<i>P</i> < 0.05). Additionally, when removing the PSMA-positive models (22Rv1 and LNCaP), the Pearson's <i>r</i> value of CD31 staining and tracer uptake prior to the antibody blockade was 0.99 (<i>P</i> < 0.05). Thus, CD31 was found to be a mutual target of EK-PSMA imaging; therefore, EK-PSMA imaging provides a viable assessment option for tumor neovascularization, especially for PSMA-negative tumors.</p>","PeriodicalId":52,"journal":{"name":"Molecular Pharmaceutics","volume":" ","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.molpharmaceut.4c01252","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

To reveal the natural correlation between prostate-specific membrane antigen (PSMA) imaging and tumor neovascularization in prostate cancer and further explore E-urea-K-based PSMA-targeted (EK-PSMA) imaging as a potential indicator of tumor neovascularization, the 22Rv1 mouse models were established and underwent 99mTc-HYNIC-ALUG SPECT/CT. Pearson correlation analysis was applied to assess the relationship between tumor tracer uptake and tumor characteristics, including size, glucose metabolism, and cell phenotypes (e.g., Ki-67, VEGF, CD31, and PSMA). Then, molecular docking further identified the key factors of EK-PSMA imaging, specifically related to tumor neovascularization. Finally, animal models with positive and negative PSMA expression (22Rv1, LNCaP, U87, SAOS-2, A549, and ACHN) were subjected to antibody-targeted blockade to verify the role of these key factors in EK-PSMA imaging. The Pearson's r values of tracer uptake correlated with CD31 and tumor size were 0.82 and 0.99, respectively (P < 0.05), and the correlations of tracer uptake with SUVmax, SUVmean, Ki-67, VEGF, and PSMA expressions were 0.47, 0.20, 0.69, -0.65, and 0.20, respectively (all P > 0.05). Molecular docking confirmed the affinity of E-urea-K to PSMA (two sites, binding scores, -5.4 kcal/mol and -6.0 kcal/mol) and CD31 (one site, binding score, -5.1 kcal/mol). The blockade of the CD31 antibody partially reduced the 99mTc-HYNIC-ALUG uptake in five other types of tumors (paired t test, P = 0.0478). The Pearson's r value of CD31 staining and tracer uptake prior to the antibody blockade was 0.84 (P < 0.05). Additionally, when removing the PSMA-positive models (22Rv1 and LNCaP), the Pearson's r value of CD31 staining and tracer uptake prior to the antibody blockade was 0.99 (P < 0.05). Thus, CD31 was found to be a mutual target of EK-PSMA imaging; therefore, EK-PSMA imaging provides a viable assessment option for tumor neovascularization, especially for PSMA-negative tumors.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Pharmaceutics
Molecular Pharmaceutics 医学-药学
CiteScore
8.00
自引率
6.10%
发文量
391
审稿时长
2 months
期刊介绍: Molecular Pharmaceutics publishes the results of original research that contributes significantly to the molecular mechanistic understanding of drug delivery and drug delivery systems. The journal encourages contributions describing research at the interface of drug discovery and drug development. Scientific areas within the scope of the journal include physical and pharmaceutical chemistry, biochemistry and biophysics, molecular and cellular biology, and polymer and materials science as they relate to drug and drug delivery system efficacy. Mechanistic Drug Delivery and Drug Targeting research on modulating activity and efficacy of a drug or drug product is within the scope of Molecular Pharmaceutics. Theoretical and experimental peer-reviewed research articles, communications, reviews, and perspectives are welcomed.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Crafting a Molecular Trojan Horse: Sialic Acid-Modified PLGA Nanoparticles for Targeted Lung Cancer Therapy. E-Urea-K-Based PSMA Imaging Served as an Alternative in Assessing Tumor Neovascularization via Targeting CD31. Amphiphilic Acyclic Cucurbit[n]uril: Synthesis, Self-Assembly, and Chemotherapeutic Delivery to Overcome Multidrug Resistance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1