Notch dependent chromatin remodeling enables Gata3 binding and drives lineage specific CD8+ T cell function.

IF 3.2 4区 医学 Q3 CELL BIOLOGY Immunology & Cell Biology Pub Date : 2025-02-26 DOI:10.1111/imcb.70002
Jessie O'Hara, Pushkar Dakle, Michelle Ly Thai Nguyen, Adele Barugahare, Taylah J Bennett, Vibha Av Udupa, Nicholas Murray, Gemma Schlegel, Constantine Kapouleas, Jasmine Li, Stephen J Turner, Brendan E Russ
{"title":"Notch dependent chromatin remodeling enables Gata3 binding and drives lineage specific CD8<sup>+</sup> T cell function.","authors":"Jessie O'Hara, Pushkar Dakle, Michelle Ly Thai Nguyen, Adele Barugahare, Taylah J Bennett, Vibha Av Udupa, Nicholas Murray, Gemma Schlegel, Constantine Kapouleas, Jasmine Li, Stephen J Turner, Brendan E Russ","doi":"10.1111/imcb.70002","DOIUrl":null,"url":null,"abstract":"<p><p>Activation of CD8<sup>+</sup> T cells enable them to control virus infections and tumors. This process involves the differentiation of naïve CD8<sup>+</sup> T cells into effector and memory states, driven by specific transcription factors (TFs). Previously, we have shown that Granzyme A (Gzma) induction in activated CD8<sup>+</sup> T cells depends on Gata3 and the establishment of a permissive chromatin landscape at the Gzma locus. Interestingly, Gzma expression is independent of IL-4 signaling, which typically upregulates Gata3 in CD4<sup>+</sup> T cells, suggesting an alternative pathway for Gata3 induction. Here we demonstrate that Notch signals during CD8<sup>+</sup> T cell activation promote Gzma expression. Inhibition of Notch signaling or loss of the Notch transactivator Rbp-j leads to reduced Gzma expression, with transcriptionally repressive chromatin at the Gzma locus. The genome targets of Gata3 differ in effector CD8<sup>+</sup> T cells activated with IL-4 compared with those activated with Notch signals or isolated after IAV infection. This indicates that the signals received during CD8<sup>+</sup> T cell activation can alter the chromatin landscape, affecting Gata3 function. Furthermore, Gata3 deficiency results in reduced IAV-specific CD8<sup>+</sup> T cell responses and decreased Gzma expression, although the Gzma locus maintains a permissive chromatin landscape. These findings suggest that Notch signals received by virus-specific CD8<sup>+</sup> T cells prepare the chromatin landscape for Gata3 binding to CD8<sup>+</sup> lineage-specific gene loci, promoting effective CD8<sup>+</sup> T cell immunity.</p>","PeriodicalId":179,"journal":{"name":"Immunology & Cell Biology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunology & Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/imcb.70002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Activation of CD8+ T cells enable them to control virus infections and tumors. This process involves the differentiation of naïve CD8+ T cells into effector and memory states, driven by specific transcription factors (TFs). Previously, we have shown that Granzyme A (Gzma) induction in activated CD8+ T cells depends on Gata3 and the establishment of a permissive chromatin landscape at the Gzma locus. Interestingly, Gzma expression is independent of IL-4 signaling, which typically upregulates Gata3 in CD4+ T cells, suggesting an alternative pathway for Gata3 induction. Here we demonstrate that Notch signals during CD8+ T cell activation promote Gzma expression. Inhibition of Notch signaling or loss of the Notch transactivator Rbp-j leads to reduced Gzma expression, with transcriptionally repressive chromatin at the Gzma locus. The genome targets of Gata3 differ in effector CD8+ T cells activated with IL-4 compared with those activated with Notch signals or isolated after IAV infection. This indicates that the signals received during CD8+ T cell activation can alter the chromatin landscape, affecting Gata3 function. Furthermore, Gata3 deficiency results in reduced IAV-specific CD8+ T cell responses and decreased Gzma expression, although the Gzma locus maintains a permissive chromatin landscape. These findings suggest that Notch signals received by virus-specific CD8+ T cells prepare the chromatin landscape for Gata3 binding to CD8+ lineage-specific gene loci, promoting effective CD8+ T cell immunity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunology & Cell Biology
Immunology & Cell Biology 医学-免疫学
CiteScore
7.50
自引率
2.50%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Australasian Society for Immunology Incorporated (ASI) was created by the amalgamation in 1991 of the Australian Society for Immunology, formed in 1970, and the New Zealand Society for Immunology, formed in 1975. The aim of the Society is to encourage and support the discipline of immunology in the Australasian region. It is a broadly based Society, embracing clinical and experimental, cellular and molecular immunology in humans and animals. The Society provides a network for the exchange of information and for collaboration within Australia, New Zealand and overseas. ASI members have been prominent in advancing biological and medical research worldwide. We seek to encourage the study of immunology in Australia and New Zealand and are active in introducing young scientists to the discipline.
期刊最新文献
A trainee-led approach to tackling gender inequity in immunology. Indigenous student engagement in science: a case study addressing the lack of diversity and equity in biomedical science and pharmacy research for Aboriginal and Torres Strait islander people. Notch dependent chromatin remodeling enables Gata3 binding and drives lineage specific CD8+ T cell function. Simultaneous coinfection with influenza virus and an arbovirus impedes influenza-specific but not Semliki Forest virus-specific responses. From pipettes to playdates: establishing a parent support group in a research setting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1