A conditionally replicative adenovirus vector containing the synNotch receptor gene for the treatment of muscle-invasive bladder cancer.

IF 4.8 3区 医学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Cancer gene therapy Pub Date : 2025-02-26 DOI:10.1038/s41417-025-00879-8
Ruhan A, Hideto Ueki, Shunya Nishioka, Rion Yamazaki, Marina Maekawa, Koichi Kitagawa, Hideaki Miyake, Toshiro Shirakawa
{"title":"A conditionally replicative adenovirus vector containing the synNotch receptor gene for the treatment of muscle-invasive bladder cancer.","authors":"Ruhan A, Hideto Ueki, Shunya Nishioka, Rion Yamazaki, Marina Maekawa, Koichi Kitagawa, Hideaki Miyake, Toshiro Shirakawa","doi":"10.1038/s41417-025-00879-8","DOIUrl":null,"url":null,"abstract":"<p><p>Muscle-invasive bladder cancer (MIBC), a highly heterogeneous disease, shows genomic instability and a high mutation rate, making it difficult to treat. Recent studies revealed that cancer stem cells (CSCs) play a critical role in MIBC frequent recurrence and high morbidity. Previous research has shown that Cyclooxygenases-2 (COX-2) is particularly highly expressed in bladder cancer cells. In recent years, the development of oncolytic adenoviruses and their use in clinical trials have gained increased attention. In this study, we composed a conditionally replicative adenovirus vector (CRAd-synNotch) that carries the COX-2 promotor driving adenoviral E1 gene, the synNotch receptor therapeutic gene, and the Ad5/35 fiber gene. Activation of the COX-2 promoter gene causes replication only within COX-2 expressing cancer cells, thereby leading to tumor oncolysis. Also, CD44 and HIF signals contribute to cancer stemness and maintaining CSCs in bladder cancer, and the transduced synNotch receptor inhibits both CD44 and HIF signals simultaneously. We performed an in vivo study using a mouse xenograft model of T24 human MIBC cells and confirmed the significant antitumor activity of CRAd-synNotch. Our findings in this study warrant the further development of CRAd-synNotch for treating patients with MIBC.</p>","PeriodicalId":9577,"journal":{"name":"Cancer gene therapy","volume":" ","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41417-025-00879-8","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Muscle-invasive bladder cancer (MIBC), a highly heterogeneous disease, shows genomic instability and a high mutation rate, making it difficult to treat. Recent studies revealed that cancer stem cells (CSCs) play a critical role in MIBC frequent recurrence and high morbidity. Previous research has shown that Cyclooxygenases-2 (COX-2) is particularly highly expressed in bladder cancer cells. In recent years, the development of oncolytic adenoviruses and their use in clinical trials have gained increased attention. In this study, we composed a conditionally replicative adenovirus vector (CRAd-synNotch) that carries the COX-2 promotor driving adenoviral E1 gene, the synNotch receptor therapeutic gene, and the Ad5/35 fiber gene. Activation of the COX-2 promoter gene causes replication only within COX-2 expressing cancer cells, thereby leading to tumor oncolysis. Also, CD44 and HIF signals contribute to cancer stemness and maintaining CSCs in bladder cancer, and the transduced synNotch receptor inhibits both CD44 and HIF signals simultaneously. We performed an in vivo study using a mouse xenograft model of T24 human MIBC cells and confirmed the significant antitumor activity of CRAd-synNotch. Our findings in this study warrant the further development of CRAd-synNotch for treating patients with MIBC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer gene therapy
Cancer gene therapy 医学-生物工程与应用微生物
CiteScore
10.20
自引率
0.00%
发文量
150
审稿时长
4-8 weeks
期刊介绍: Cancer Gene Therapy is the essential gene and cellular therapy resource for cancer researchers and clinicians, keeping readers up to date with the latest developments in gene and cellular therapies for cancer. The journal publishes original laboratory and clinical research papers, case reports and review articles. Publication topics include RNAi approaches, drug resistance, hematopoietic progenitor cell gene transfer, cancer stem cells, cellular therapies, homologous recombination, ribozyme technology, antisense technology, tumor immunotherapy and tumor suppressors, translational research, cancer therapy, gene delivery systems (viral and non-viral), anti-gene therapy (antisense, siRNA & ribozymes), apoptosis; mechanisms and therapies, vaccine development, immunology and immunotherapy, DNA synthesis and repair. Cancer Gene Therapy publishes the results of laboratory investigations, preclinical studies, and clinical trials in the field of gene transfer/gene therapy and cellular therapies as applied to cancer research. Types of articles published include original research articles; case reports; brief communications; review articles in the main fields of drug resistance/sensitivity, gene therapy, cellular therapy, tumor suppressor and anti-oncogene therapy, cytokine/tumor immunotherapy, etc.; industry perspectives; and letters to the editor.
期刊最新文献
Ferroptosis enhances the therapeutic potential of oncolytic adenoviruses KD01 against cancer. Therapeutic targeting of the tryptophan-kynurenine-aryl hydrocarbon receptor pathway with apigenin in MED12-mutant leiomyoma cells. A conditionally replicative adenovirus vector containing the synNotch receptor gene for the treatment of muscle-invasive bladder cancer. The role of tumor-derived exosomal LncRNA in tumor metastasis. FXYD5 regulates gastric cancer cell metastasis and drug resistance by EMT modulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1