Contamination and source-specific health risk assessment of soil heavy metals in the middle and upper reaches of the Heihe River Basin of China.

IF 3.2 3区 环境科学与生态学 Q3 ENGINEERING, ENVIRONMENTAL Environmental Geochemistry and Health Pub Date : 2025-02-27 DOI:10.1007/s10653-025-02401-3
Jinlu Huang, Yuqiang Tian, Zhifeng Liu, Zhaoxi Li, Siyu Sun, Zhaowen Su, Hongmiao Dai
{"title":"Contamination and source-specific health risk assessment of soil heavy metals in the middle and upper reaches of the Heihe River Basin of China.","authors":"Jinlu Huang, Yuqiang Tian, Zhifeng Liu, Zhaoxi Li, Siyu Sun, Zhaowen Su, Hongmiao Dai","doi":"10.1007/s10653-025-02401-3","DOIUrl":null,"url":null,"abstract":"<p><p>Anthropogenic activities drive heavy metal contamination in soil, making source-specific apportionment essential for managing health risks in rapidly urbanizing areas. This study focuses on the novel task of quantifying health risks from specific sources of heavy metal contamination and visualizing the spatial patterns of human activities' impact on heavy metal contamination and health risks. It combined multiple analytical techniques, including pollution indices, health risk assessments, and bivariate local indicators of spatial association analysis. Additionally, the absolute principal component score-multiple linear regression model, integrated with a human health risk assessment, was employed to quantify health risks and evaluate the contributions of specific sources. Results revealed that Cd and As were at moderate contamination levels, while Zn, Cu, and Ni showed low contamination. Despite generally low contamination levels, moderately to heavily contaminated areas were identified in the southern region correlated with human activities. Although both non-carcinogenic and carcinogenic risks were low for both children and adults, Cr and As were still the main contributors to health risks, primarily through ingestion, with children being at a greater risk compared to adults. The health risks were primarily linked to four sources: traffic and mining, natural sources, agricultural activities, and industrial sources. Industrial (children: 27.47%; adults: 31.96%) and agricultural activities (children: 27.11%; adults: 24.01%) were the primary contributors to non-carcinogenic risks, while the carcinogenic risks were mainly contributed by agricultural activities (children: 40.21%; adults: 40.14%). Therefore, controlling industrial and agricultural activities is crucial to safeguarding public health during sustainable regional development.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 4","pages":"92"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-025-02401-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Anthropogenic activities drive heavy metal contamination in soil, making source-specific apportionment essential for managing health risks in rapidly urbanizing areas. This study focuses on the novel task of quantifying health risks from specific sources of heavy metal contamination and visualizing the spatial patterns of human activities' impact on heavy metal contamination and health risks. It combined multiple analytical techniques, including pollution indices, health risk assessments, and bivariate local indicators of spatial association analysis. Additionally, the absolute principal component score-multiple linear regression model, integrated with a human health risk assessment, was employed to quantify health risks and evaluate the contributions of specific sources. Results revealed that Cd and As were at moderate contamination levels, while Zn, Cu, and Ni showed low contamination. Despite generally low contamination levels, moderately to heavily contaminated areas were identified in the southern region correlated with human activities. Although both non-carcinogenic and carcinogenic risks were low for both children and adults, Cr and As were still the main contributors to health risks, primarily through ingestion, with children being at a greater risk compared to adults. The health risks were primarily linked to four sources: traffic and mining, natural sources, agricultural activities, and industrial sources. Industrial (children: 27.47%; adults: 31.96%) and agricultural activities (children: 27.11%; adults: 24.01%) were the primary contributors to non-carcinogenic risks, while the carcinogenic risks were mainly contributed by agricultural activities (children: 40.21%; adults: 40.14%). Therefore, controlling industrial and agricultural activities is crucial to safeguarding public health during sustainable regional development.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
High Purity Hydrogen and Carbon Dioxide Separation with Electrochemical Pump Operation of HT-PBI Fuel Cell at 120°C
IF 0 ECS Meeting AbstractsPub Date : 2023-08-28 DOI: 10.1149/ma2023-01361955mtgabs
Derrick Maxwell, Qiang Sun, Humberto Rojas, Ian Kendrick, Ryan Pavlicek, Emory De Castro, Akarsh Aurora, Sanjeev Mukerjee
来源期刊
Environmental Geochemistry and Health
Environmental Geochemistry and Health 环境科学-工程:环境
CiteScore
8.00
自引率
4.80%
发文量
279
审稿时长
4.2 months
期刊介绍: Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people. Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes. The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.
期刊最新文献
Positive effects of composite material immobilized enzymes in 2,4,6-trichlorophenol degradation on soil properties and plant growth. Traditional and low-cost technical approaches for investigating greenhouse gases and particulate matter distribution along an urban-to-rural transect (Greve River Basin, Central Italy). Assessment of water balance based on SWAT hydrological model: a case study of Oued Cherraa basin (Northeastern Morocco). Cellulose nanocrystals for green remediation of contaminated soil with multiple heavy metals. Methylobacterium sp. EIKU22 as a strategic bioinoculant for uranium and arsenic mitigation in agricultural soil: a microbial solution for sustainable agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1