Aging-related hyperphosphatemia triggers the release of TNF-α from macrophages, promoting indicators of sarcopenia through the reduction of IL-15 expression in skeletal muscle

IF 5.2 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Life sciences Pub Date : 2025-02-25 DOI:10.1016/j.lfs.2025.123507
Elena Alcalde-Estévez , Ariadna Moreno-Piedra , Ana Asenjo-Bueno , María Martos-Elvira , Mariano de la Serna-Soto , Marta Ruiz-Ortega , Gemma Olmos , Susana López-Ongil , María P. Ruiz-Torres
{"title":"Aging-related hyperphosphatemia triggers the release of TNF-α from macrophages, promoting indicators of sarcopenia through the reduction of IL-15 expression in skeletal muscle","authors":"Elena Alcalde-Estévez ,&nbsp;Ariadna Moreno-Piedra ,&nbsp;Ana Asenjo-Bueno ,&nbsp;María Martos-Elvira ,&nbsp;Mariano de la Serna-Soto ,&nbsp;Marta Ruiz-Ortega ,&nbsp;Gemma Olmos ,&nbsp;Susana López-Ongil ,&nbsp;María P. Ruiz-Torres","doi":"10.1016/j.lfs.2025.123507","DOIUrl":null,"url":null,"abstract":"<div><h3>Aims</h3><div>The association between aging-related hyperphosphatemia and sarcopenia has been documented, and evidence suggests that inflammaging is involved in the manifestation of sarcopenia. The present study investigates whether hyperphosphatemia triggers inflammation, thereby inducing the appearance of sarcopenia along with the cytokines involved in these processes.</div></div><div><h3>Materials and methods</h3><div>RAW 264.7 macrophages were incubated with β-glycerophosphate (BGP), as a phosphate donor, at different time intervals, to assess the production of proinflammatory markers. Conditioned medium from macrophages was collected and added to cultured C2C12 myoblasts to analyse whether proinflammatory molecules, released by macrophages, modified myogenic differentiation, cell senescence or myokine IL-15 expression. A neutralising antibody anti-TNF-α and recombinant IL-15 were added to evaluate the role of these cytokines in the observed effects. Additionally, TNF-α, IL-15, serum phosphate, and sarcopenia signs were evaluated in 5-month-old mice, 24-month-old mice and 24-month-old mice fed with a hypophosphatemic diet.</div></div><div><h3>Key findings</h3><div>BGP increased TNF-α expression in macrophages through NFkB activation. Conditioned medium from BGP-treated macrophages impaired myogenic differentiation in differentiating myoblasts and promoted cellular senescence and reduced IL-15 expression in undifferentiated myoblasts. These effects were mediated by TNF-α. Old mice displayed reduced expression of muscle IL-15 and elevated circulating TNF-α, along with increased serum phosphate levels, which correlated with the appearance of sarcopenia indicators. The hypophosphatemic diet prevented these changes in old mice.</div></div><div><h3>Significance</h3><div>Hyperphosphatemia induces TNF-α production in macrophages, which contributes to the reduced expression of muscular IL-15. This mechanism may play a role in inducing sarcopenia in elderly mice.</div></div>","PeriodicalId":18122,"journal":{"name":"Life sciences","volume":"368 ","pages":"Article 123507"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0024320525001419","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aims

The association between aging-related hyperphosphatemia and sarcopenia has been documented, and evidence suggests that inflammaging is involved in the manifestation of sarcopenia. The present study investigates whether hyperphosphatemia triggers inflammation, thereby inducing the appearance of sarcopenia along with the cytokines involved in these processes.

Materials and methods

RAW 264.7 macrophages were incubated with β-glycerophosphate (BGP), as a phosphate donor, at different time intervals, to assess the production of proinflammatory markers. Conditioned medium from macrophages was collected and added to cultured C2C12 myoblasts to analyse whether proinflammatory molecules, released by macrophages, modified myogenic differentiation, cell senescence or myokine IL-15 expression. A neutralising antibody anti-TNF-α and recombinant IL-15 were added to evaluate the role of these cytokines in the observed effects. Additionally, TNF-α, IL-15, serum phosphate, and sarcopenia signs were evaluated in 5-month-old mice, 24-month-old mice and 24-month-old mice fed with a hypophosphatemic diet.

Key findings

BGP increased TNF-α expression in macrophages through NFkB activation. Conditioned medium from BGP-treated macrophages impaired myogenic differentiation in differentiating myoblasts and promoted cellular senescence and reduced IL-15 expression in undifferentiated myoblasts. These effects were mediated by TNF-α. Old mice displayed reduced expression of muscle IL-15 and elevated circulating TNF-α, along with increased serum phosphate levels, which correlated with the appearance of sarcopenia indicators. The hypophosphatemic diet prevented these changes in old mice.

Significance

Hyperphosphatemia induces TNF-α production in macrophages, which contributes to the reduced expression of muscular IL-15. This mechanism may play a role in inducing sarcopenia in elderly mice.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Life sciences
Life sciences 医学-药学
CiteScore
12.20
自引率
1.60%
发文量
841
审稿时长
6 months
期刊介绍: Life Sciences is an international journal publishing articles that emphasize the molecular, cellular, and functional basis of therapy. The journal emphasizes the understanding of mechanism that is relevant to all aspects of human disease and translation to patients. All articles are rigorously reviewed. The Journal favors publication of full-length papers where modern scientific technologies are used to explain molecular, cellular and physiological mechanisms. Articles that merely report observations are rarely accepted. Recommendations from the Declaration of Helsinki or NIH guidelines for care and use of laboratory animals must be adhered to. Articles should be written at a level accessible to readers who are non-specialists in the topic of the article themselves, but who are interested in the research. The Journal welcomes reviews on topics of wide interest to investigators in the life sciences. We particularly encourage submission of brief, focused reviews containing high-quality artwork and require the use of mechanistic summary diagrams.
期刊最新文献
SIRT2 alleviates pre-eclampsia via prompting mitochondrial biogenesis and function. ROS-mediated ferroptosis and pyroptosis in cardiomyocytes: An update Edaravone targets PDGFRβ to attenuate VSMC phenotypic transition. MMP3 as a new target of Danshensu/tetramethylpyrazine derivative for attenuating cardiac fibrosis post-myocardial infarction. Nanocellulose dysregulated glucose homeostasis in female mice on a Western diet: The role of gut microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1