Sabine L Laguë, Catherine M Ivy, Julia M York, Neal J Dawson, Beverly A Chua, Luis Alza, Graham R Scott, Kevin G McCracken, William K Milsom
{"title":"Gas exchange, oxygen transport and metabolism in high-altitude waterfowl.","authors":"Sabine L Laguë, Catherine M Ivy, Julia M York, Neal J Dawson, Beverly A Chua, Luis Alza, Graham R Scott, Kevin G McCracken, William K Milsom","doi":"10.1098/rstb.2023.0424","DOIUrl":null,"url":null,"abstract":"<p><p>High-altitude life poses physiological challenges to all animals due to decreased environmental oxygen (O<sub>2</sub>) availability (hypoxia) and cold. Supporting high metabolic rates and body temperatures with limited O<sub>2</sub> is challenging. Many birds, however, thrive at high altitudes. The O<sub>2</sub>-transport cascade describes the pathway involved in moving O<sub>2</sub> from the environment to the tissues encompassing: (i) ventilation, (ii) pulmonary O<sub>2</sub> diffusion, (iii) circulation, (iv) tissue O<sub>2</sub> diffusion, and (v) mitochondrial O<sub>2</sub> use for ATP production. Shared avian traits such as rigid lungs with cross-current gas exchange and unidirectional airflow aid in O<sub>2</sub> acquisition and transport in all birds. Many high-altitude birds, however, have evolved enhancements to some or all steps in the cascade. In this review, we summarize the current literature on gas exchange and O<sub>2</sub> transport in high-altitude birds, providing an overview of the O<sub>2</sub>-transport cascade that principally draws on the literature from high-altitude waterfowl, the most well-studied group of high-altitude birds. We close by discussing two important avenues for future research: distinguishing between the influences of plasticity and evolution and investigating whether the morphological and physiological differences discussed contribute to enhanced locomotor or thermogenic performance, a potential critical link to fitness.This article is part of the theme issue 'The biology of the avian respiratory system'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"380 1920","pages":"20230424"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864830/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2023.0424","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
High-altitude life poses physiological challenges to all animals due to decreased environmental oxygen (O2) availability (hypoxia) and cold. Supporting high metabolic rates and body temperatures with limited O2 is challenging. Many birds, however, thrive at high altitudes. The O2-transport cascade describes the pathway involved in moving O2 from the environment to the tissues encompassing: (i) ventilation, (ii) pulmonary O2 diffusion, (iii) circulation, (iv) tissue O2 diffusion, and (v) mitochondrial O2 use for ATP production. Shared avian traits such as rigid lungs with cross-current gas exchange and unidirectional airflow aid in O2 acquisition and transport in all birds. Many high-altitude birds, however, have evolved enhancements to some or all steps in the cascade. In this review, we summarize the current literature on gas exchange and O2 transport in high-altitude birds, providing an overview of the O2-transport cascade that principally draws on the literature from high-altitude waterfowl, the most well-studied group of high-altitude birds. We close by discussing two important avenues for future research: distinguishing between the influences of plasticity and evolution and investigating whether the morphological and physiological differences discussed contribute to enhanced locomotor or thermogenic performance, a potential critical link to fitness.This article is part of the theme issue 'The biology of the avian respiratory system'.
期刊介绍:
The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas):
Organismal, environmental and evolutionary biology
Neuroscience and cognition
Cellular, molecular and developmental biology
Health and disease.