Structure and function of the avian respiratory system.

J N Maina
{"title":"Structure and function of the avian respiratory system.","authors":"J N Maina","doi":"10.1098/rstb.2023.0435","DOIUrl":null,"url":null,"abstract":"<p><p>Among the extant air-breathing vertebrates, the avian respiratory system is the most efficient gas exchanger. Novel morphological and physiological adaptations and specializations largely explain its exceptional functional superiority. Anatomically, the avian respiratory system is separated into lungs that serve as gas exchangers and air sacs that operate as ventilators. Utterly rigid, the avian lungs are deeply fixed to the ribs and the vertebrae. A thin blood-gas barrier (BGB), vast respiratory surface area and large pulmonary capillary blood volume generate high total pulmonary morphometric diffusing capacity of O<sub>2</sub>. The weak allometric scaling of the thickness of the BGB indicates optimization for gas exchange; the negative scaling and strong correlation between the surface density of the respiratory surface area and body mass show the extreme subdivision of the gas exchange tissue; and the respiratory surface area, the pulmonary capillary blood volume and the total pulmonary morphometric diffusing capacity of O<sub>2</sub> correlate strongly and positively with body mass. The arrangement of the structural components of the exchange tissue form crosscurrent-, countercurrent-like- and multicapillary serial arterialization gas exchange designs. By synchronized actions of the air sacs, the palaeopulmonic part of the of the avian lung is efficiently ventilated continuously and unidirectionally in a caudocranial direction.This article is part of the theme issue 'The biology of the avian respiratory system'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"380 1920","pages":"20230435"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864839/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2023.0435","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Among the extant air-breathing vertebrates, the avian respiratory system is the most efficient gas exchanger. Novel morphological and physiological adaptations and specializations largely explain its exceptional functional superiority. Anatomically, the avian respiratory system is separated into lungs that serve as gas exchangers and air sacs that operate as ventilators. Utterly rigid, the avian lungs are deeply fixed to the ribs and the vertebrae. A thin blood-gas barrier (BGB), vast respiratory surface area and large pulmonary capillary blood volume generate high total pulmonary morphometric diffusing capacity of O2. The weak allometric scaling of the thickness of the BGB indicates optimization for gas exchange; the negative scaling and strong correlation between the surface density of the respiratory surface area and body mass show the extreme subdivision of the gas exchange tissue; and the respiratory surface area, the pulmonary capillary blood volume and the total pulmonary morphometric diffusing capacity of O2 correlate strongly and positively with body mass. The arrangement of the structural components of the exchange tissue form crosscurrent-, countercurrent-like- and multicapillary serial arterialization gas exchange designs. By synchronized actions of the air sacs, the palaeopulmonic part of the of the avian lung is efficiently ventilated continuously and unidirectionally in a caudocranial direction.This article is part of the theme issue 'The biology of the avian respiratory system'.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.80
自引率
1.60%
发文量
365
审稿时长
3 months
期刊介绍: The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas): Organismal, environmental and evolutionary biology Neuroscience and cognition Cellular, molecular and developmental biology Health and disease.
期刊最新文献
Changes of division of labour along the eusociality spectrum in termites, with comparisons to multicellularity. Cultural evolution, social ratcheting and the evolution of human division of labour. Division of labour as key driver of social evolution. Division of labour during honeybee colony defence: poetic and scientific views. Division of labour in colony defence in a clonal ant.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1