Warren Burggren, Edward Dzialowski, Barbara Tzschentke
{"title":"The avian embryo as a time-honoured animal model in developmental, biomedical and agricultural research.","authors":"Warren Burggren, Edward Dzialowski, Barbara Tzschentke","doi":"10.1098/rstb.2023.0438","DOIUrl":null,"url":null,"abstract":"<p><p>Avian embryos have been at the core of embryological, morphological, physiological and biochemical/molecular research, especially involving research in three primary areas: developmental, biomedical and agricultural research. As developmental models, the avian embryo-especially that of the chicken-has been the single most used embryo model, perhaps in part from the combination of large size, ease of access and prior knowledge base. Developmental research with avian embryos has included organ system studies of the heart, vasculature, lungs, kidneys, nervous system, etc., as well as integrated physiological processes including gas-exchange, acid-base and ion/water regulation. In terms of translational research, avian embryos have modelled vascular development, based on the easily accessible chorioallantoic membrane under the eggshell. This same respiratory organ has enabled toxicological studies of how pollutants affect vertebrate development. Investigation of the transition to pulmonary breathing and the associated emergence of respiratory control has also relied heavily upon the avian embryo. In addition to developmental and biomedical investigations, the avian embryo has been studied intensively due to the huge importance of domesticated birds as a food source. Consequently, the effects of environment (including temperature, humidity, noise levels and photoperiod) during incubation on subsequent post-hatch phenotype are being actively investigated.This article is part of the theme issue 'The biology of the avian respiratory system'.</p>","PeriodicalId":19872,"journal":{"name":"Philosophical Transactions of the Royal Society B: Biological Sciences","volume":"380 1920","pages":"20230438"},"PeriodicalIF":5.4000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864840/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophical Transactions of the Royal Society B: Biological Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1098/rstb.2023.0438","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Avian embryos have been at the core of embryological, morphological, physiological and biochemical/molecular research, especially involving research in three primary areas: developmental, biomedical and agricultural research. As developmental models, the avian embryo-especially that of the chicken-has been the single most used embryo model, perhaps in part from the combination of large size, ease of access and prior knowledge base. Developmental research with avian embryos has included organ system studies of the heart, vasculature, lungs, kidneys, nervous system, etc., as well as integrated physiological processes including gas-exchange, acid-base and ion/water regulation. In terms of translational research, avian embryos have modelled vascular development, based on the easily accessible chorioallantoic membrane under the eggshell. This same respiratory organ has enabled toxicological studies of how pollutants affect vertebrate development. Investigation of the transition to pulmonary breathing and the associated emergence of respiratory control has also relied heavily upon the avian embryo. In addition to developmental and biomedical investigations, the avian embryo has been studied intensively due to the huge importance of domesticated birds as a food source. Consequently, the effects of environment (including temperature, humidity, noise levels and photoperiod) during incubation on subsequent post-hatch phenotype are being actively investigated.This article is part of the theme issue 'The biology of the avian respiratory system'.
期刊介绍:
The journal publishes topics across the life sciences. As long as the core subject lies within the biological sciences, some issues may also include content crossing into other areas such as the physical sciences, social sciences, biophysics, policy, economics etc. Issues generally sit within four broad areas (although many issues sit across these areas):
Organismal, environmental and evolutionary biology
Neuroscience and cognition
Cellular, molecular and developmental biology
Health and disease.