{"title":"Robust and optimal control of open quantum systems.","authors":"Zi-Jie Chen, Hongwei Huang, Lida Sun, Qing-Xuan Jie, Jie Zhou, Ziyue Hua, Yifang Xu, Weiting Wang, Guang-Can Guo, Chang-Ling Zou, Luyan Sun, Xu-Bo Zou","doi":"10.1126/sciadv.adr0875","DOIUrl":null,"url":null,"abstract":"<p><p>Recent advancements in quantum technologies have highlighted the importance of mitigating system imperfections, including parameter uncertainties and decoherence effects, to improve the performance of experimental platforms. However, most of the previous efforts in quantum control are devoted to the realization of arbitrary unitary operations in a closed quantum system. Here, we improve the algorithm that suppresses system imperfections and noises, providing notably enhanced scalability for robust and optimal control of open quantum systems. Through experimental validation in a superconducting quantum circuit, we demonstrate that our approach outperforms its conventional counterpart for closed quantum systems with an ultralow infidelity of about 0.60%, while the complexity of this algorithm exhibits the same scaling, with only a modest increase in the prefactor. This work represents a notable advancement in quantum optimal control techniques, paving the way for realizing quantum-enhanced technologies in practical applications.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 9","pages":"eadr0875"},"PeriodicalIF":11.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11864189/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr0875","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in quantum technologies have highlighted the importance of mitigating system imperfections, including parameter uncertainties and decoherence effects, to improve the performance of experimental platforms. However, most of the previous efforts in quantum control are devoted to the realization of arbitrary unitary operations in a closed quantum system. Here, we improve the algorithm that suppresses system imperfections and noises, providing notably enhanced scalability for robust and optimal control of open quantum systems. Through experimental validation in a superconducting quantum circuit, we demonstrate that our approach outperforms its conventional counterpart for closed quantum systems with an ultralow infidelity of about 0.60%, while the complexity of this algorithm exhibits the same scaling, with only a modest increase in the prefactor. This work represents a notable advancement in quantum optimal control techniques, paving the way for realizing quantum-enhanced technologies in practical applications.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.