Outcome adaptive propensity score methods for handling censoring and high-dimensionality: Application to insurance claims.

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES Statistical Methods in Medical Research Pub Date : 2025-02-27 DOI:10.1177/09622802241306856
Jiacong Du, Youfei Yu, Min Zhang, Zhenke Wu, Andrew M Ryan, Bhramar Mukherjee
{"title":"Outcome adaptive propensity score methods for handling censoring and high-dimensionality: Application to insurance claims.","authors":"Jiacong Du, Youfei Yu, Min Zhang, Zhenke Wu, Andrew M Ryan, Bhramar Mukherjee","doi":"10.1177/09622802241306856","DOIUrl":null,"url":null,"abstract":"<p><p>Propensity scores are commonly used to reduce the confounding bias in non-randomized observational studies for estimating the average treatment effect. An important assumption underlying this approach is that all confounders that are associated with both the treatment and the outcome of interest are measured and included in the propensity score model. In the absence of strong prior knowledge about potential confounders, researchers may agnostically want to adjust for a high-dimensional set of pre-treatment variables. As such, variable selection procedure is needed for propensity score estimation. In addition, studies show that including variables related to treatment only in the propensity score model may inflate the variance of the treatment effect estimators, while including variables that are predictive of only the outcome can improve efficiency. In this article, we propose to incorporate outcome-covariate relationship in the propensity score model by including the predicted binary outcome probability as a covariate. Our approach can be easily adapted to an ensemble of variable selection methods, including regularization methods and modern machine-learning tools based on classification and regression trees. We evaluate our method to estimate the treatment effects on a binary outcome, which is possibly censored, across multiple treatment groups. Simulation studies indicate that incorporating outcome probability for estimating the propensity scores can improve statistical efficiency and protect against model misspecification. The proposed methods are applied to a cohort of advanced-stage prostate cancer patients identified from a private insurance claims database for comparing the adverse effects of four commonly used drugs for treating castration-resistant prostate cancer.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802241306856"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802241306856","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Propensity scores are commonly used to reduce the confounding bias in non-randomized observational studies for estimating the average treatment effect. An important assumption underlying this approach is that all confounders that are associated with both the treatment and the outcome of interest are measured and included in the propensity score model. In the absence of strong prior knowledge about potential confounders, researchers may agnostically want to adjust for a high-dimensional set of pre-treatment variables. As such, variable selection procedure is needed for propensity score estimation. In addition, studies show that including variables related to treatment only in the propensity score model may inflate the variance of the treatment effect estimators, while including variables that are predictive of only the outcome can improve efficiency. In this article, we propose to incorporate outcome-covariate relationship in the propensity score model by including the predicted binary outcome probability as a covariate. Our approach can be easily adapted to an ensemble of variable selection methods, including regularization methods and modern machine-learning tools based on classification and regression trees. We evaluate our method to estimate the treatment effects on a binary outcome, which is possibly censored, across multiple treatment groups. Simulation studies indicate that incorporating outcome probability for estimating the propensity scores can improve statistical efficiency and protect against model misspecification. The proposed methods are applied to a cohort of advanced-stage prostate cancer patients identified from a private insurance claims database for comparing the adverse effects of four commonly used drugs for treating castration-resistant prostate cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
期刊最新文献
Relationship between collider bias and interactions on the log-additive scale. A new cure model accounting for longitudinal data and flexible patterns of hazard ratios over time. Outcome adaptive propensity score methods for handling censoring and high-dimensionality: Application to insurance claims. Extension of Fisher's least significant difference method to multi-armed group-sequential response-adaptive designs. Generalized framework for identifying meaningful heterogenous treatment effects in observational studies: A parametric data-adaptive G-computation approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1