Enhanced vehicle routing for medical waste management via hybrid deep reinforcement learning and optimization algorithms.

IF 3 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Frontiers in Artificial Intelligence Pub Date : 2025-02-12 eCollection Date: 2025-01-01 DOI:10.3389/frai.2025.1496653
Norhan Khallaf, Osama Abd-El Rouf, Abeer D Algarni, Mohy Hadhoud, Ahmed Kafafy
{"title":"Enhanced vehicle routing for medical waste management via hybrid deep reinforcement learning and optimization algorithms.","authors":"Norhan Khallaf, Osama Abd-El Rouf, Abeer D Algarni, Mohy Hadhoud, Ahmed Kafafy","doi":"10.3389/frai.2025.1496653","DOIUrl":null,"url":null,"abstract":"<p><p>Modern technologies, particularly artificial intelligence, play a crucial role in improving medical waste management by developing intelligent systems that optimize the shortest routes for waste transport, from its generation to final disposal. Algorithms such as Q-learning and Deep Q Network enhance the efficiency of transport and disposal while reducing environmental pollution risks. In this study, artificial intelligence algorithms were trained using Homogeneous agent systems with a capacity of 3 tons to optimize routes between hospitals within the Closed Capacitated Vehicle Routing Problem framework. Integrating AI with pathfinding techniques, especially the hybrid A*-Deep Q Network approach, led to advanced results despite initial challenges. K-means clustering was used to divide hospitals into zones, allowing agents to navigate the shortest paths using the Deep Q Network. Analysis revealed that the agents' capacity was not fully utilized. This led to the application of Fractional Knapsack dynamic programming with Deep Q Network to maximize capacity utilization while achieving optimal routes. Since the criteria used to compare the algorithms' effectiveness are the number of vehicles and the utilization of the total vehicle capacity, it was found that the Fractional Knapsack with DQN stands out by requiring the fewest number of vehicles (4), achieving 0% loss in this metric as it matches the optimal value. Compared to other algorithms that require 5 or 7 vehicles, it reduces the fleet size by 20 and 42.86%, respectively. Additionally, it maximizes vehicle capacity utilization at 100%, unlike other methods, which utilize only 33 to 66% of vehicle capacity. However, this improvement comes at the cost of a 9% increase in distance, reflecting the longer routes needed to serve more hospitals per trip. Despite this trade-off, the algorithm's ability to minimize fleet size while fully utilizing vehicle capacity makes it the optimal choice in scenarios where these factors are critical. This approach not only improved performance but also enhanced environmental sustainability, making it the most effective and challenging solution among all the algorithms used in the study.</p>","PeriodicalId":33315,"journal":{"name":"Frontiers in Artificial Intelligence","volume":"8 ","pages":"1496653"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11861366/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frai.2025.1496653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Modern technologies, particularly artificial intelligence, play a crucial role in improving medical waste management by developing intelligent systems that optimize the shortest routes for waste transport, from its generation to final disposal. Algorithms such as Q-learning and Deep Q Network enhance the efficiency of transport and disposal while reducing environmental pollution risks. In this study, artificial intelligence algorithms were trained using Homogeneous agent systems with a capacity of 3 tons to optimize routes between hospitals within the Closed Capacitated Vehicle Routing Problem framework. Integrating AI with pathfinding techniques, especially the hybrid A*-Deep Q Network approach, led to advanced results despite initial challenges. K-means clustering was used to divide hospitals into zones, allowing agents to navigate the shortest paths using the Deep Q Network. Analysis revealed that the agents' capacity was not fully utilized. This led to the application of Fractional Knapsack dynamic programming with Deep Q Network to maximize capacity utilization while achieving optimal routes. Since the criteria used to compare the algorithms' effectiveness are the number of vehicles and the utilization of the total vehicle capacity, it was found that the Fractional Knapsack with DQN stands out by requiring the fewest number of vehicles (4), achieving 0% loss in this metric as it matches the optimal value. Compared to other algorithms that require 5 or 7 vehicles, it reduces the fleet size by 20 and 42.86%, respectively. Additionally, it maximizes vehicle capacity utilization at 100%, unlike other methods, which utilize only 33 to 66% of vehicle capacity. However, this improvement comes at the cost of a 9% increase in distance, reflecting the longer routes needed to serve more hospitals per trip. Despite this trade-off, the algorithm's ability to minimize fleet size while fully utilizing vehicle capacity makes it the optimal choice in scenarios where these factors are critical. This approach not only improved performance but also enhanced environmental sustainability, making it the most effective and challenging solution among all the algorithms used in the study.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.10
自引率
2.50%
发文量
272
审稿时长
13 weeks
期刊最新文献
Comparison of 3D and 2D area measurement of acute burn wounds with LiDAR technique and deep learning model. Advancements in cache management: a review of machine learning innovations for enhanced performance and security. Transfer learning-based hybrid VGG16-machine learning approach for heart disease detection with explainable artificial intelligence. AI, universal basic income, and power: symbolic violence in the tech elite's narrative. General SIR model for visible and hidden epidemic dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1