Ferroelectric Hafnium Oxide: A Potential Game-Changer for Nanoelectronic Devices and Systems

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2025-02-26 DOI:10.1002/aelm.202400686
David Lehninger, Franz Müller, Yannick Raffel, Shouzhuo Yang, Markus Neuber, Sukhrob Abdulazhanov, Thomas Kämpfe, Konrad Seidel, Maximilian Lederer
{"title":"Ferroelectric Hafnium Oxide: A Potential Game-Changer for Nanoelectronic Devices and Systems","authors":"David Lehninger,&nbsp;Franz Müller,&nbsp;Yannick Raffel,&nbsp;Shouzhuo Yang,&nbsp;Markus Neuber,&nbsp;Sukhrob Abdulazhanov,&nbsp;Thomas Kämpfe,&nbsp;Konrad Seidel,&nbsp;Maximilian Lederer","doi":"10.1002/aelm.202400686","DOIUrl":null,"url":null,"abstract":"<p>The discovery of ferroelectricity in hafnium oxide has propelled ferroelectric devices to the forefront of nanoelectronics, offering distinct advantages over alternative technologies. Ferroelectric memories, such as Ferroelectric Random Access Memories (FeRAM) and the Ferroelectric Field Effect Transistor (FeFET), combine non-volatility with high-speed operation and low power consumption, though they contend with specific challenges, including variability and endurance limitations. Meanwhile, piezoelectric and pyroelectric sensors/actuators exploit the capability of ferroelectric materials to interconvert mechanical or thermal energy with electrical signals. These sensors demonstrate exceptional sensitivity, though factors such as material fatigue and temperature stability can impact their performance. Additionally, radio frequency devices, particularly varactors, utilize ferroelectric materials to enable tunable capacitance, enhancing dynamic control. This review assesses the advantages and current challenges across these technologies, offering insights into prospective solutions.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 7","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400686","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aelm.202400686","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The discovery of ferroelectricity in hafnium oxide has propelled ferroelectric devices to the forefront of nanoelectronics, offering distinct advantages over alternative technologies. Ferroelectric memories, such as Ferroelectric Random Access Memories (FeRAM) and the Ferroelectric Field Effect Transistor (FeFET), combine non-volatility with high-speed operation and low power consumption, though they contend with specific challenges, including variability and endurance limitations. Meanwhile, piezoelectric and pyroelectric sensors/actuators exploit the capability of ferroelectric materials to interconvert mechanical or thermal energy with electrical signals. These sensors demonstrate exceptional sensitivity, though factors such as material fatigue and temperature stability can impact their performance. Additionally, radio frequency devices, particularly varactors, utilize ferroelectric materials to enable tunable capacitance, enhancing dynamic control. This review assesses the advantages and current challenges across these technologies, offering insights into prospective solutions.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁电氧化铪:纳米电子器件和系统的潜在改变者
氧化铪中铁电性的发现将铁电器件推向了纳米电子学的前沿,与其他技术相比具有明显的优势。铁电存储器,如铁电随机存取存储器(FeRAM)和铁电场效应晶体管(FeFET),结合了非易失性、高速运行和低功耗,尽管它们面临着特定的挑战,包括可变性和耐用性限制。同时,压电和热释电传感器/执行器利用铁电材料的能力将机械能或热能与电信号相互转换。尽管材料疲劳和温度稳定性等因素会影响其性能,但这些传感器表现出卓越的灵敏度。此外,射频器件,特别是变容管,利用铁电材料实现可调电容,增强动态控制。本文评估了这些技术的优势和当前面临的挑战,并提供了未来解决方案的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Recycled Piezoelectric Materials with Competitive Second‐Life Functional Properties Synaptic Behavior in SnSe 2 Field‐Effect Transistors Induced by Surface Oxide and Trap Dynamics Aging and Electrical Stability of DNTT Honey‐Gated OFETs The Rise of Organic Electrochemical Transistors for Brain‐Inspired Neuromorphic Computing Tunable Electronic and Optoelectronic Properties of MoS2 Through Molecular Coverage-Controlled Polyoxometalate Doping (Adv. Electron. Mater. 4/2026)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1