Integrated optical entangled quantum vortex emitters

IF 32.9 1区 物理与天体物理 Q1 OPTICS Nature Photonics Pub Date : 2025-02-28 DOI:10.1038/s41566-025-01620-5
Jieshan Huang, Jun Mao, Xudong Li, Jingze Yuan, Yun Zheng, Chonghao Zhai, Tianxiang Dai, Zhaorong Fu, Jueming Bao, Yan Yang, Daoxin Dai, Yan Li, Qihuang Gong, Jianwei Wang
{"title":"Integrated optical entangled quantum vortex emitters","authors":"Jieshan Huang, Jun Mao, Xudong Li, Jingze Yuan, Yun Zheng, Chonghao Zhai, Tianxiang Dai, Zhaorong Fu, Jueming Bao, Yan Yang, Daoxin Dai, Yan Li, Qihuang Gong, Jianwei Wang","doi":"10.1038/s41566-025-01620-5","DOIUrl":null,"url":null,"abstract":"Quantum vortices of light carrying orbital angular momentum stand as essential resources for quantum photonic technologies. Recent advancements in integrated photonics offer the potential to create and control quantum vortices using fully integrated circuits, eliminating the need for intricate free-space alignment, modulation and the stabilization of bulky optical elements. However, generating quantum vortices in planar optical waveguides and circuits poses challenges, owing to the complexities of confining and guiding twisted photons and, importantly, the difficulties in preparing the quantum superposition and entanglement of vortex states. Here we report the realization of entangled quantum vortex emitters, leveraging programmable integrated nanophotonic circuits. These circuits enable the generation and arbitrary control of resilient vortex entanglement in free space, coherently transitioning from on-chip-created path entanglement. This capability is facilitated by a chip-to-free-space interfacing quantum technology that combines reprogrammable integrated quantum photonics with advanced classical free-space beam structuring. The emitters operate in a plug-and-play manner, enabling swift reconfiguration within microseconds. Validation of multidimensional genuine entanglement is achieved through quantum tomography and measurement of the dimension witness. Our work demonstrates integrated quantum vortex devices that combine the versatility of the on-chip processing quantum information with the robustness of transmitting quantum vortices in free space, opening new avenues for applications in quantum communication, quantum light detection and ranging, and quantum computation and storage. Combining on-chip photon-pair sources, two sets of linear integrated circuits for path entanglements and two path-to-orbital angular momentum converters, free-space-entangled orbital angular momentum photon pairs can be generated in high-dimensional vortex states, offering a high level of programmable dynamical reconfigurability.","PeriodicalId":18926,"journal":{"name":"Nature Photonics","volume":"19 5","pages":"471-478"},"PeriodicalIF":32.9000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Photonics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s41566-025-01620-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum vortices of light carrying orbital angular momentum stand as essential resources for quantum photonic technologies. Recent advancements in integrated photonics offer the potential to create and control quantum vortices using fully integrated circuits, eliminating the need for intricate free-space alignment, modulation and the stabilization of bulky optical elements. However, generating quantum vortices in planar optical waveguides and circuits poses challenges, owing to the complexities of confining and guiding twisted photons and, importantly, the difficulties in preparing the quantum superposition and entanglement of vortex states. Here we report the realization of entangled quantum vortex emitters, leveraging programmable integrated nanophotonic circuits. These circuits enable the generation and arbitrary control of resilient vortex entanglement in free space, coherently transitioning from on-chip-created path entanglement. This capability is facilitated by a chip-to-free-space interfacing quantum technology that combines reprogrammable integrated quantum photonics with advanced classical free-space beam structuring. The emitters operate in a plug-and-play manner, enabling swift reconfiguration within microseconds. Validation of multidimensional genuine entanglement is achieved through quantum tomography and measurement of the dimension witness. Our work demonstrates integrated quantum vortex devices that combine the versatility of the on-chip processing quantum information with the robustness of transmitting quantum vortices in free space, opening new avenues for applications in quantum communication, quantum light detection and ranging, and quantum computation and storage. Combining on-chip photon-pair sources, two sets of linear integrated circuits for path entanglements and two path-to-orbital angular momentum converters, free-space-entangled orbital angular momentum photon pairs can be generated in high-dimensional vortex states, offering a high level of programmable dynamical reconfigurability.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
集成光学纠缠量子涡旋发射器
携带轨道角动量的光量子涡旋是量子光子技术的重要资源。集成光子学的最新进展提供了使用完全集成电路创建和控制量子漩涡的潜力,消除了对复杂的自由空间对准、调制和笨重光学元件稳定的需要。然而,由于限制和引导扭曲光子的复杂性,以及制备涡旋态的量子叠加和纠缠的困难,在平面光波导和电路中产生量子涡旋带来了挑战。在这里,我们报告了利用可编程集成纳米光子电路实现纠缠量子涡旋发射器。这些电路能够在自由空间中产生和任意控制弹性涡旋纠缠,从芯片上创建的路径纠缠相干过渡。芯片到自由空间接口量子技术促进了这种能力,该技术将可重新编程集成量子光子学与先进的经典自由空间光束结构相结合。发射器以即插即用的方式工作,可以在微秒内快速重新配置。通过量子层析成像和维度见证的测量,实现了多维真实纠缠的验证。我们的工作展示了集成量子涡旋器件,它结合了片上处理量子信息的多功能性和在自由空间中传输量子涡旋的鲁棒性,为量子通信、量子光探测和测距以及量子计算和存储的应用开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Photonics
Nature Photonics 物理-光学
CiteScore
54.20
自引率
1.70%
发文量
158
审稿时长
12 months
期刊介绍: Nature Photonics is a monthly journal dedicated to the scientific study and application of light, known as Photonics. It publishes top-quality, peer-reviewed research across all areas of light generation, manipulation, and detection. The journal encompasses research into the fundamental properties of light and its interactions with matter, as well as the latest developments in optoelectronic devices and emerging photonics applications. Topics covered include lasers, LEDs, imaging, detectors, optoelectronic devices, quantum optics, biophotonics, optical data storage, spectroscopy, fiber optics, solar energy, displays, terahertz technology, nonlinear optics, plasmonics, nanophotonics, and X-rays. In addition to research papers and review articles summarizing scientific findings in optoelectronics, Nature Photonics also features News and Views pieces and research highlights. It uniquely includes articles on the business aspects of the industry, such as technology commercialization and market analysis, offering a comprehensive perspective on the field.
期刊最新文献
A high-speed heterogeneous lithium tantalate silicon photonics platform On-chip topological leaky-wave antenna for full-space terahertz wireless connectivity Encoding and manipulating ultrafast coherent valleytronic information with lightwaves Stable deep-blue organic light-emitting diodes based on sensitized fluorescence In-pixel colour correction with organic self-adaptive transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1