B. M. Huddart, A. Hernández-Melián, G. D. A. Wood, D. A. Mayoh, M. Gomilšek, Z. Guguchia, C. Wang, T. J. Hicken, S. J. Blundell, G. Balakrishnan, T. Lancaster
{"title":"Field-orientation-dependent magnetic phases in GdRu2Si2 probed with muon-spin spectroscopy","authors":"B. M. Huddart, A. Hernández-Melián, G. D. A. Wood, D. A. Mayoh, M. Gomilšek, Z. Guguchia, C. Wang, T. J. Hicken, S. J. Blundell, G. Balakrishnan, T. Lancaster","doi":"10.1103/physrevb.111.054440","DOIUrl":null,"url":null,"abstract":"Centrosymmetric GdRu</a:mi>2</a:mn></a:msub>Si</a:mi>2</a:mn></a:msub></a:mrow></a:math> exhibits a variety of multi-<b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:mrow><b:mi>Q</b:mi></b:mrow></b:math> magnetic states as a function of temperature and applied magnetic field, including a square skyrmion-lattice phase. The material's behavior is strongly dependent on the direction of the applied field, with different phase diagrams resulting for fields applied parallel or perpendicular to the crystallographic <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mi>c</c:mi></c:math> axis. Here, we present the results of muon-spin relaxation (<d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\"><d:mrow><d:msup><d:mi>μ</d:mi><d:mo>+</d:mo></d:msup><d:mi>SR</d:mi></d:mrow></d:math>) measurements on single crystals of <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\"><e:mrow><e:msub><e:mi>GdRu</e:mi><e:mn>2</e:mn></e:msub><e:msub><e:mi>Si</e:mi><e:mn>2</e:mn></e:msub></e:mrow></e:math>. Our analysis is based on the computation of muon stopping sites and consideration of quantum zero-point motion effects of muons, allowing direct comparison with the underlying spin textures in the material. The muon site is confirmed experimentally, using angle-dependent measurements of the muon Knight shift. Using transverse-field <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:msup><f:mi>μ</f:mi><f:mo>+</f:mo></f:msup><f:mi>SR</f:mi></f:math> with fields applied along either the [001] or [100] crystallographic directions, we distinguish between the magnetic phases in this system via their distinct muon response, providing additional evidence for the skyrmion and meron-lattice phases, while also suggesting the existence of RKKY-driven muon hyperfine coupling. Zero-field <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"><g:mrow><g:msup><g:mi>μ</g:mi><g:mo>+</g:mo></g:msup><g:mi>SR</g:mi></g:mrow></g:math> provides clear evidence for a transition between two distinct magnetically ordered phases at 39 K. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"16 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.054440","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Centrosymmetric GdRu2Si2 exhibits a variety of multi-Q magnetic states as a function of temperature and applied magnetic field, including a square skyrmion-lattice phase. The material's behavior is strongly dependent on the direction of the applied field, with different phase diagrams resulting for fields applied parallel or perpendicular to the crystallographic c axis. Here, we present the results of muon-spin relaxation (μ+SR) measurements on single crystals of GdRu2Si2. Our analysis is based on the computation of muon stopping sites and consideration of quantum zero-point motion effects of muons, allowing direct comparison with the underlying spin textures in the material. The muon site is confirmed experimentally, using angle-dependent measurements of the muon Knight shift. Using transverse-field μ+SR with fields applied along either the [001] or [100] crystallographic directions, we distinguish between the magnetic phases in this system via their distinct muon response, providing additional evidence for the skyrmion and meron-lattice phases, while also suggesting the existence of RKKY-driven muon hyperfine coupling. Zero-field μ+SR provides clear evidence for a transition between two distinct magnetically ordered phases at 39 K. Published by the American Physical Society2025
期刊介绍:
Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide.
PRB covers the full range of condensed matter, materials physics, and related subfields, including:
-Structure and phase transitions
-Ferroelectrics and multiferroics
-Disordered systems and alloys
-Magnetism
-Superconductivity
-Electronic structure, photonics, and metamaterials
-Semiconductors and mesoscopic systems
-Surfaces, nanoscience, and two-dimensional materials
-Topological states of matter