Shunyi Zhao, Lingxiao Wang, Dimitrios Kleidonas, Fangfang Qi, Yue Liang, Jiaying Zheng, Anthony D. Umpierre, Long-Jun Wu
{"title":"Chemogenetic activation of microglial Gi signaling decreases microglial surveillance and impairs neuronal synchronization","authors":"Shunyi Zhao, Lingxiao Wang, Dimitrios Kleidonas, Fangfang Qi, Yue Liang, Jiaying Zheng, Anthony D. Umpierre, Long-Jun Wu","doi":"10.1126/sciadv.ado7829","DOIUrl":null,"url":null,"abstract":"Microglia actively survey the brain and dynamically interact with neurons to maintain brain homeostasis. Microglial Gi protein–coupled receptors (Gi-GPCRs) play a critical role in microglia-neuron communications. However, the impact of temporally activating microglial Gi signaling on microglial dynamics and neuronal activity in the homeostatic brain remains largely unknown. In this study, we used Gi-based designer receptors exclusively activated by designer drugs (Gi-DREADD) to selectively and temporally modulate microglial Gi signaling pathway. By integrating this chemogenetic approach with in vivo two-photon imaging, we observed that exogenous activation of microglial Gi signaling transiently inhibited microglial process dynamics, reduced neuronal activity, and impaired neuronal synchronization. These altered neuronal functions were associated with a decrease in interactions between microglia and neuron somata. Together, this study demonstrates that acute, exogenous activation of microglial Gi signaling regulates neuronal circuit function, offering a potential pharmacological target for the neuromodulation through microglia.","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"31 1","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.ado7829","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microglia actively survey the brain and dynamically interact with neurons to maintain brain homeostasis. Microglial Gi protein–coupled receptors (Gi-GPCRs) play a critical role in microglia-neuron communications. However, the impact of temporally activating microglial Gi signaling on microglial dynamics and neuronal activity in the homeostatic brain remains largely unknown. In this study, we used Gi-based designer receptors exclusively activated by designer drugs (Gi-DREADD) to selectively and temporally modulate microglial Gi signaling pathway. By integrating this chemogenetic approach with in vivo two-photon imaging, we observed that exogenous activation of microglial Gi signaling transiently inhibited microglial process dynamics, reduced neuronal activity, and impaired neuronal synchronization. These altered neuronal functions were associated with a decrease in interactions between microglia and neuron somata. Together, this study demonstrates that acute, exogenous activation of microglial Gi signaling regulates neuronal circuit function, offering a potential pharmacological target for the neuromodulation through microglia.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.