High-order limiting methods using maximum principle bounds derived from the Boltzmann equation I: Euler equations

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computational Physics Pub Date : 2025-02-26 DOI:10.1016/j.jcp.2025.113895
Tarik Dzanic , Luigi Martinelli
{"title":"High-order limiting methods using maximum principle bounds derived from the Boltzmann equation I: Euler equations","authors":"Tarik Dzanic ,&nbsp;Luigi Martinelli","doi":"10.1016/j.jcp.2025.113895","DOIUrl":null,"url":null,"abstract":"<div><div>The use of limiting methods for high-order numerical approximations of hyperbolic conservation laws generally requires defining an admissible region/bounds for the solution. In this work, we present a novel approach for computing solution bounds and limiting for the Euler equations through the kinetic representation provided by the Boltzmann equation, which allows for extending limiters designed for linear advection directly to the Euler equations. Given an arbitrary set of solution values to compute bounds over (e.g., numerical stencil) and a desired linear advection limiter, the proposed approach yields an analytic expression for the admissible region of particle distribution function values, which may be numerically integrated to yield a set of bounds for the density, momentum, and total energy. These solution bounds are shown to preserve positivity of density/pressure/internal energy and, when paired with a limiting technique, can robustly resolve strong discontinuities while recovering high-order accuracy in smooth regions without any ad hoc corrections (e.g., relaxing the bounds). This approach is demonstrated in the context of an explicit unstructured high-order discontinuous Galerkin/flux reconstruction scheme for a variety of difficult problems in gas dynamics, including cases with extreme shocks and shock-vortex interactions. Furthermore, this work presents a foundation for limiting techniques for more complex macroscopic governing equations that can be derived from an underlying kinetic representation for which admissible solution bounds are not well-understood.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"529 ","pages":"Article 113895"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999125001780","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The use of limiting methods for high-order numerical approximations of hyperbolic conservation laws generally requires defining an admissible region/bounds for the solution. In this work, we present a novel approach for computing solution bounds and limiting for the Euler equations through the kinetic representation provided by the Boltzmann equation, which allows for extending limiters designed for linear advection directly to the Euler equations. Given an arbitrary set of solution values to compute bounds over (e.g., numerical stencil) and a desired linear advection limiter, the proposed approach yields an analytic expression for the admissible region of particle distribution function values, which may be numerically integrated to yield a set of bounds for the density, momentum, and total energy. These solution bounds are shown to preserve positivity of density/pressure/internal energy and, when paired with a limiting technique, can robustly resolve strong discontinuities while recovering high-order accuracy in smooth regions without any ad hoc corrections (e.g., relaxing the bounds). This approach is demonstrated in the context of an explicit unstructured high-order discontinuous Galerkin/flux reconstruction scheme for a variety of difficult problems in gas dynamics, including cases with extreme shocks and shock-vortex interactions. Furthermore, this work presents a foundation for limiting techniques for more complex macroscopic governing equations that can be derived from an underlying kinetic representation for which admissible solution bounds are not well-understood.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用从玻尔兹曼方程导出的最大原则界限的高阶极限方法 I:欧拉方程
使用极限方法求解双曲守恒律的高阶数值近似通常需要定义解的可容许区域/界。在这项工作中,我们提出了一种通过玻尔兹曼方程提供的动力学表示来计算欧拉方程解边界和极限的新方法,该方法允许将设计用于线性平流的限制器直接扩展到欧拉方程。给定任意一组解值来计算边界(例如,数值模板)和期望的线性平流限制器,所提出的方法产生了粒子分布函数值的可容许区域的解析表达式,可以通过数值积分来产生密度、动量和总能量的一组边界。这些解边界被证明可以保持密度/压力/内能的正性,并且当与限制技术相结合时,可以健壮地解决强不连续,同时在光滑区域恢复高阶精度,而无需任何特别修正(例如,放宽边界)。该方法在一个明确的非结构化高阶不连续Galerkin/通量重建方案的背景下得到了证明,该方案适用于各种气体动力学难题,包括极端冲击和激波-涡旋相互作用的情况。此外,这项工作为更复杂的宏观控制方程的限制技术提供了基础,这些方程可以从潜在的动力学表示中推导出来,其中可接受的解边界没有得到很好的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
期刊最新文献
A Central Differential flux with high-Order dissipation for robust simulations of transcritical flows High-order empirical interpolation methods for real-time solution of parametrized nonlinear PDEs Smoothed particle-mesh hydrodynamics (SPMH) for fluid-structure interactions involving thin structures Higher order stray field computation on tensor product domains Simultaneous reconstruction of the trajectories and strengths for moving acoustic point sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1