Biochar-fertilizer interaction increases nitrogen retention, uptake and use efficiency of cinnamomum camphora: A 15N tracer study

IF 3.1 2区 农林科学 Q2 SOIL SCIENCE Geoderma Regional Pub Date : 2025-03-01 DOI:10.1016/j.geodrs.2025.e00936
Yuxuan Guo , Victor Manna Samson , Yetong Zhi , Yulin Chen , Xi Yang , Guanghao Jia , Yanling Mao
{"title":"Biochar-fertilizer interaction increases nitrogen retention, uptake and use efficiency of cinnamomum camphora: A 15N tracer study","authors":"Yuxuan Guo ,&nbsp;Victor Manna Samson ,&nbsp;Yetong Zhi ,&nbsp;Yulin Chen ,&nbsp;Xi Yang ,&nbsp;Guanghao Jia ,&nbsp;Yanling Mao","doi":"10.1016/j.geodrs.2025.e00936","DOIUrl":null,"url":null,"abstract":"<div><div>The excessive application of nitrogen (N) fertilizers can have detrimental environmental and economic impacts. Enhancing N use efficiency (NUE) through biochar application may help mitigate these losses while promoting plant growth. However, different biochar types may influence NUE differently. To investigate these effects, a greenhouse pot experiment was conducted to assess the impact of two biochar types on N dynamics. Four treatments were applied: control (CK), fertilizer (F), sawdust biochar + fertilizer (SBF), and rice straw biochar + fertilizer (RBF). A <sup>15</sup>N tracer technique was used to evaluate N accumulation and NUE in <em>C. camphora</em>. Results indicated that biochar-fertilizer combinations significantly improved soil inorganic N (NH<sub>4</sub><sup>+</sup>-N and NO<sub>3</sub><sup>−</sup>-N) retention, this was attributed to biochar's high surface area and functional groups enhancing N ion sorption. Additionally, biochar-amended treatments (RBF and SBF) increased soil total N, <sup>15</sup>N content and plant N uptake. Notably, by the final sampling period, plant total N content in the RBF treatment was 34.62 %, 16.67 %, and 9.38 % higher than in CK, F, and SBF treatments, respectively. Furthermore, <sup>15</sup>N content in the RBF treatment was significantly greater than in SBF and F, showing increases of 26.51 % and 30.19 %, respectively. Biochar application also markedly improved NUE, with increases of 103.77 % and 27.86 % in RBF and SBF treatments, respectively, compared to the F. Similarly, soil fertilizer N recovery was 49.92 % and 43.94 % higher in RBF and SBF soils, respectively, than in F. The enhanced urease and protease activity in biochar-amended soils likely contributed to these improvements in fertilizer recovery and NUE. Overrall, our findings demonstrate that first the magnitude of N retention and NUE enhancement varies with biochar type. Second, combining biochar with fertilizer improves fertilizer N retention, NUE, and recovery, ultimately enhancing <em>C. camphora</em> productivity.</div></div>","PeriodicalId":56001,"journal":{"name":"Geoderma Regional","volume":"40 ","pages":"Article e00936"},"PeriodicalIF":3.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma Regional","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352009425000215","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The excessive application of nitrogen (N) fertilizers can have detrimental environmental and economic impacts. Enhancing N use efficiency (NUE) through biochar application may help mitigate these losses while promoting plant growth. However, different biochar types may influence NUE differently. To investigate these effects, a greenhouse pot experiment was conducted to assess the impact of two biochar types on N dynamics. Four treatments were applied: control (CK), fertilizer (F), sawdust biochar + fertilizer (SBF), and rice straw biochar + fertilizer (RBF). A 15N tracer technique was used to evaluate N accumulation and NUE in C. camphora. Results indicated that biochar-fertilizer combinations significantly improved soil inorganic N (NH4+-N and NO3-N) retention, this was attributed to biochar's high surface area and functional groups enhancing N ion sorption. Additionally, biochar-amended treatments (RBF and SBF) increased soil total N, 15N content and plant N uptake. Notably, by the final sampling period, plant total N content in the RBF treatment was 34.62 %, 16.67 %, and 9.38 % higher than in CK, F, and SBF treatments, respectively. Furthermore, 15N content in the RBF treatment was significantly greater than in SBF and F, showing increases of 26.51 % and 30.19 %, respectively. Biochar application also markedly improved NUE, with increases of 103.77 % and 27.86 % in RBF and SBF treatments, respectively, compared to the F. Similarly, soil fertilizer N recovery was 49.92 % and 43.94 % higher in RBF and SBF soils, respectively, than in F. The enhanced urease and protease activity in biochar-amended soils likely contributed to these improvements in fertilizer recovery and NUE. Overrall, our findings demonstrate that first the magnitude of N retention and NUE enhancement varies with biochar type. Second, combining biochar with fertilizer improves fertilizer N retention, NUE, and recovery, ultimately enhancing C. camphora productivity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoderma Regional
Geoderma Regional Agricultural and Biological Sciences-Soil Science
CiteScore
6.10
自引率
7.30%
发文量
122
审稿时长
76 days
期刊介绍: Global issues require studies and solutions on national and regional levels. Geoderma Regional focuses on studies that increase understanding and advance our scientific knowledge of soils in all regions of the world. The journal embraces every aspect of soil science and welcomes reviews of regional progress.
期刊最新文献
Controlling factors of soil organic and inorganic carbon in North Adana, Türkiye Biochar-fertilizer interaction increases nitrogen retention, uptake and use efficiency of cinnamomum camphora: A 15N tracer study Impacts on soil chemical quality caused by supplemental feeding to beef cattle while on dry-season pasture in tropical Brazil Impact of sowing time of maize and ruzigrass intercropping systems on soil chemical, physical and microbiological properties in an Oxisol from southern Brazil Assessing the impact of soil use and management systems on soil health in Southern Brazil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1