Enhanced stability of Cu-ZnO-CeO2 catalyst with active carbon coating for methanol steam reforming on cordierite honeycomb ceramics

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS Journal of The Energy Institute Pub Date : 2025-02-25 DOI:10.1016/j.joei.2025.102054
Shaoqin Huang , Wenming Guo , Hang Qin , Yi Zhang , Chenxu Guo , Ziru Huang , Wen Xie , Pengzhao Gao , Hanning Xiao
{"title":"Enhanced stability of Cu-ZnO-CeO2 catalyst with active carbon coating for methanol steam reforming on cordierite honeycomb ceramics","authors":"Shaoqin Huang ,&nbsp;Wenming Guo ,&nbsp;Hang Qin ,&nbsp;Yi Zhang ,&nbsp;Chenxu Guo ,&nbsp;Ziru Huang ,&nbsp;Wen Xie ,&nbsp;Pengzhao Gao ,&nbsp;Hanning Xiao","doi":"10.1016/j.joei.2025.102054","DOIUrl":null,"url":null,"abstract":"<div><div>Methanol steam reforming (MSR) represents a promising technology for hydrogen generation, particularly applicable to polymer electrolyte membrane fuel cells (PEMFCs), tackling issues related to transportation and storage. However, designing a catalyst which achieves low pressure drop, high activity and stability remains a significant challenge. This study aims to develop a coating to enhance both catalytic activity and stability during MSR. The cordierite honeycomb ceramic was modified with an active carbon coating and subsequently loaded with Cu-ZnO-CeO<sub>2</sub> catalysts. The characteristics of the catalyst particles and coating on the cordierite honeycomb ceramics were analyzed before and after the reaction, and compared to the catalyst loaded in Al<sub>2</sub>O<sub>3</sub> coating under similar condition. The results demonstrated that the catalyst loaded on active carbon coating exhibits superior activity and stability. Specifically, the 25 wt% catalyst displayed the highest activity, achieving maximum methanol conversion at 270 °C and maintaining 93 % methanol conversion after 100 h of reaction. The pore structure of the active carbon coating resulted in a particle size of 7 nm before the reaction and 11 nm after the reaction, which inhibited particle agglomeration and improved the stability of the catalyst. This study highlights the potential application of active carbon coating in improving the stability of methanol reforming catalysts for hydrogen production.</div></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"120 ","pages":"Article 102054"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967125000820","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Methanol steam reforming (MSR) represents a promising technology for hydrogen generation, particularly applicable to polymer electrolyte membrane fuel cells (PEMFCs), tackling issues related to transportation and storage. However, designing a catalyst which achieves low pressure drop, high activity and stability remains a significant challenge. This study aims to develop a coating to enhance both catalytic activity and stability during MSR. The cordierite honeycomb ceramic was modified with an active carbon coating and subsequently loaded with Cu-ZnO-CeO2 catalysts. The characteristics of the catalyst particles and coating on the cordierite honeycomb ceramics were analyzed before and after the reaction, and compared to the catalyst loaded in Al2O3 coating under similar condition. The results demonstrated that the catalyst loaded on active carbon coating exhibits superior activity and stability. Specifically, the 25 wt% catalyst displayed the highest activity, achieving maximum methanol conversion at 270 °C and maintaining 93 % methanol conversion after 100 h of reaction. The pore structure of the active carbon coating resulted in a particle size of 7 nm before the reaction and 11 nm after the reaction, which inhibited particle agglomeration and improved the stability of the catalyst. This study highlights the potential application of active carbon coating in improving the stability of methanol reforming catalysts for hydrogen production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
堇青石蜂窝陶瓷上用于甲醇蒸汽转化的带有活性炭涂层的 Cu-ZnO-CeO2 催化剂稳定性增强
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
期刊最新文献
Multi-scale exploration of the effects of fuel structure and hydrogen-doped on soot formation Editorial Board Study on the correlation between coal property parameters and its pyrolysis heat absorption Effect of promoters and calcination temperature on the performance of nickel silica core-shell catalyst in biogas dry reforming Research progress of the synergistic removal of nitrogen oxides(NOx)and chlorinated volatile organic compounds(CVOCs)in industrial flue gas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1