Analysis of CO2 solubility in ionic liquids as promising absorbents using response surface methodology and machine learning

IF 8.4 2区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of CO2 Utilization Pub Date : 2025-03-01 DOI:10.1016/j.jcou.2025.103043
Alireza Rahimi, Fatemeh Bahmanzadegan, Ahad Ghaemi
{"title":"Analysis of CO2 solubility in ionic liquids as promising absorbents using response surface methodology and machine learning","authors":"Alireza Rahimi,&nbsp;Fatemeh Bahmanzadegan,&nbsp;Ahad Ghaemi","doi":"10.1016/j.jcou.2025.103043","DOIUrl":null,"url":null,"abstract":"<div><div>This study explored CO<sub>2</sub> solubility in ionic liquids using Response Surface Methodology (RSM) and Artificial Neural Networks (ANNs), specifically Multilayer Perceptron (MLP) and Radial Basis Function (RBF) networks, to model and optimize absorption processes. In our study, we analyzed several ionic liquids (ILs), including [bmim][PF6], [P(5) mpyrr][Tf2N], [mp(3)pip][FSI], [mp(3)pyrr][FSI], [N1223][FSI], [bmmim][Tf2N], and [P4441][Tf2N], chosen for their unique properties such as high thermal stability and ionic conductivity. Experimental data analysis identified mass, viscosity, pressure, molar concentration, and surface tension as key influencing parameters. RSM demonstrated excellent fit with an R² of 0.9999, while ANNs exhibited superior predictive accuracy, with R² values approaching unity. The MLP network, employing a two-layer training activation function, achieved a minimum Mean Squared Error (MSE) of 0.001082 for test data. The RBF network with 26 neurons and a spread of 2 reached a minimum MSE of 0.0011252. 3D response surface analyses of MLP, RBF, and RSM revealed intricate parameter interdependencies. Increased ionic liquid mass enhances CO<sub>2</sub> absorption by expanding the interaction space and providing more binding sites. Elevated pressure significantly increases solubility by compressing the gas phase and driving more CO<sub>2</sub> molecules into the liquid. Higher viscosity impedes CO<sub>2</sub> movement within the liquid, while lower viscosity facilitates faster diffusion. A higher molar concentration of CO<sub>2</sub> in the gas phase increases the driving force for absorption, leading to a greater influx of CO<sub>2</sub> into the ionic liquid. While RSM surfaces exhibited rigid, polynomial-based trends, the smoother MLP plots effectively captured complex nonlinearities, highlighting ANNs' superior predictive capabilities for optimizing CO<sub>2</sub> capture systems in ionic liquids.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"93 ","pages":"Article 103043"},"PeriodicalIF":8.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982025000277","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explored CO2 solubility in ionic liquids using Response Surface Methodology (RSM) and Artificial Neural Networks (ANNs), specifically Multilayer Perceptron (MLP) and Radial Basis Function (RBF) networks, to model and optimize absorption processes. In our study, we analyzed several ionic liquids (ILs), including [bmim][PF6], [P(5) mpyrr][Tf2N], [mp(3)pip][FSI], [mp(3)pyrr][FSI], [N1223][FSI], [bmmim][Tf2N], and [P4441][Tf2N], chosen for their unique properties such as high thermal stability and ionic conductivity. Experimental data analysis identified mass, viscosity, pressure, molar concentration, and surface tension as key influencing parameters. RSM demonstrated excellent fit with an R² of 0.9999, while ANNs exhibited superior predictive accuracy, with R² values approaching unity. The MLP network, employing a two-layer training activation function, achieved a minimum Mean Squared Error (MSE) of 0.001082 for test data. The RBF network with 26 neurons and a spread of 2 reached a minimum MSE of 0.0011252. 3D response surface analyses of MLP, RBF, and RSM revealed intricate parameter interdependencies. Increased ionic liquid mass enhances CO2 absorption by expanding the interaction space and providing more binding sites. Elevated pressure significantly increases solubility by compressing the gas phase and driving more CO2 molecules into the liquid. Higher viscosity impedes CO2 movement within the liquid, while lower viscosity facilitates faster diffusion. A higher molar concentration of CO2 in the gas phase increases the driving force for absorption, leading to a greater influx of CO2 into the ionic liquid. While RSM surfaces exhibited rigid, polynomial-based trends, the smoother MLP plots effectively captured complex nonlinearities, highlighting ANNs' superior predictive capabilities for optimizing CO2 capture systems in ionic liquids.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用响应面方法和机器学习分析离子液体作为有前途的吸收剂的CO2溶解度
本研究利用响应面法(RSM)和人工神经网络(ANNs),特别是多层感知器(MLP)和径向基函数(RBF)网络,探索离子液体中二氧化碳的溶解度,以模拟和优化吸收过程。在我们的研究中,我们分析了几种离子液体(ILs),包括[bmim][PF6], [P(5) mpyrr][Tf2N], [mp(3)pip][FSI], [mp(3)pyrr][FSI], [N1223][FSI], [bmmim][Tf2N]和[P4441][Tf2N],选择了它们独特的性能,如高热稳定性和离子导电性。实验数据分析表明,质量、粘度、压力、摩尔浓度和表面张力是主要的影响参数。RSM具有较好的拟合效果,R²为0.9999,而ann具有较好的预测精度,R²值接近1。MLP网络采用两层训练激活函数,测试数据的均方误差(MSE)最小值为0.001082。在26个神经元、2个扩散的RBF网络中,MSE最小值为0.0011252。MLP、RBF和RSM的三维响应面分析揭示了复杂的参数相互依赖性。离子液体质量的增加通过扩大相互作用空间和提供更多的结合位点来增强CO2的吸收。升高的压力通过压缩气相和驱动更多的二氧化碳分子进入液体,显著地增加了溶解度。较高的粘度阻碍了二氧化碳在液体中的运动,而较低的粘度有利于更快的扩散。气相中较高的CO2摩尔浓度增加了吸收的驱动力,导致更多的CO2流入离子液体。虽然RSM表面表现出刚性的、基于多项式的趋势,但更平滑的MLP图有效地捕获了复杂的非线性,突出了人工神经网络在优化离子液体中二氧化碳捕获系统方面的卓越预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of CO2 Utilization
Journal of CO2 Utilization CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.90
自引率
10.40%
发文量
406
审稿时长
2.8 months
期刊介绍: The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials. The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications. The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.
期刊最新文献
Synthesis and evaluation of bifunctional reforming-shift composite catalysts on metal foams for methanol steam reforming with reduced CO production Sustainable utilization of flue gas components (CO2, SO2, and NOx) in skim rubber production via microbubble technology Band-edge alignment in ultra-narrow InAs1-xSbx photocathodes enabling selective solar-driven CO2-to-liquid conversion Elucidating nitrogen doping effects in carbon-based CO2 adsorbents through data-driven analysis for rational adsorbent design Bioinspired porous cementitious materials for CO₂ capture: A critical review of accelerated carbonation strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1