Increasing anthropogenic contributions on hydrochemical evolution of groundwater in the Yellow River basin over the past decade

IF 3.1 3区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Applied Geochemistry Pub Date : 2025-02-22 DOI:10.1016/j.apgeochem.2025.106331
Feisheng Feng , Guangyong Chen , Tingting Yao , Yu Wei , Yongping Shan , Wanli Su
{"title":"Increasing anthropogenic contributions on hydrochemical evolution of groundwater in the Yellow River basin over the past decade","authors":"Feisheng Feng ,&nbsp;Guangyong Chen ,&nbsp;Tingting Yao ,&nbsp;Yu Wei ,&nbsp;Yongping Shan ,&nbsp;Wanli Su","doi":"10.1016/j.apgeochem.2025.106331","DOIUrl":null,"url":null,"abstract":"<div><div>The temporal evolution of groundwater chemistry is crucial for guiding sustainable water resource management. In China, the Yellow River Basin features active geological structures, diverse lithology, and significant human impacts, leading to unclear patterns and factors governing groundwater chemistry evolution. In this study, we investigated the characteristics, sources, and controlling factors of groundwater chemistry in the Yellow River Basin during the period of 2011–2022, with a view to providing guidance for water chemistry management in the region. The results indicate that over time, major ions (Na<sup>+</sup>, Mg<sup>2+</sup>, Cl<sup>−</sup>, SO<sub>4</sub><sup>2−</sup>, NO<sub>3</sub><sup>−</sup>, and F<sup>−</sup>) in the Yellow River Basin's groundwater rise then fall, with pH initially increasing before stabilizing at a mild alkaline level. The anions in groundwater chemistry are dominated by HCO<sub>3</sub><sup>−</sup>, which accounts for 38.89–60.78% of the anion concentration equivalent, and cations are dominated by Na<sup>+</sup>, which accounts for 31.43–72.22%. Hydrochemical types shift among HCO<sub>3</sub>–Ca, Cl–SO<sub>4</sub>–Na, and mixed HCO<sub>3</sub>–Ca–Mg, with Cl–SO<sub>4</sub>–Na type correlating positively with human activity level. Dissolution of minerals are the primary sources of groundwater chemistry. Hydrochemical evolution is driven by rock weathering alongside human activities such as sewage discharge and fertilizer application. Initially, mineral weathering was the key factor, with the chemical composition becoming dynamically altered as human activity increased. In summary, the groundwater chemistry in the Yellow River Basin mainly stems from mineral reactions, initially by rock weathering and later affected by rising human activities. This study advances knowledge of groundwater geochemical dynamics in the Yellow River Basin, supporting improved management and sustainable water resource use.</div></div>","PeriodicalId":8064,"journal":{"name":"Applied Geochemistry","volume":"183 ","pages":"Article 106331"},"PeriodicalIF":3.1000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Geochemistry","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S088329272500054X","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The temporal evolution of groundwater chemistry is crucial for guiding sustainable water resource management. In China, the Yellow River Basin features active geological structures, diverse lithology, and significant human impacts, leading to unclear patterns and factors governing groundwater chemistry evolution. In this study, we investigated the characteristics, sources, and controlling factors of groundwater chemistry in the Yellow River Basin during the period of 2011–2022, with a view to providing guidance for water chemistry management in the region. The results indicate that over time, major ions (Na+, Mg2+, Cl, SO42−, NO3, and F) in the Yellow River Basin's groundwater rise then fall, with pH initially increasing before stabilizing at a mild alkaline level. The anions in groundwater chemistry are dominated by HCO3, which accounts for 38.89–60.78% of the anion concentration equivalent, and cations are dominated by Na+, which accounts for 31.43–72.22%. Hydrochemical types shift among HCO3–Ca, Cl–SO4–Na, and mixed HCO3–Ca–Mg, with Cl–SO4–Na type correlating positively with human activity level. Dissolution of minerals are the primary sources of groundwater chemistry. Hydrochemical evolution is driven by rock weathering alongside human activities such as sewage discharge and fertilizer application. Initially, mineral weathering was the key factor, with the chemical composition becoming dynamically altered as human activity increased. In summary, the groundwater chemistry in the Yellow River Basin mainly stems from mineral reactions, initially by rock weathering and later affected by rising human activities. This study advances knowledge of groundwater geochemical dynamics in the Yellow River Basin, supporting improved management and sustainable water resource use.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Geochemistry
Applied Geochemistry 地学-地球化学与地球物理
CiteScore
6.10
自引率
8.80%
发文量
272
审稿时长
65 days
期刊介绍: Applied Geochemistry is an international journal devoted to publication of original research papers, rapid research communications and selected review papers in geochemistry and urban geochemistry which have some practical application to an aspect of human endeavour, such as the preservation of the environment, health, waste disposal and the search for resources. Papers on applications of inorganic, organic and isotope geochemistry and geochemical processes are therefore welcome provided they meet the main criterion. Spatial and temporal monitoring case studies are only of interest to our international readership if they present new ideas of broad application. Topics covered include: (1) Environmental geochemistry (including natural and anthropogenic aspects, and protection and remediation strategies); (2) Hydrogeochemistry (surface and groundwater); (3) Medical (urban) geochemistry; (4) The search for energy resources (in particular unconventional oil and gas or emerging metal resources); (5) Energy exploitation (in particular geothermal energy and CCS); (6) Upgrading of energy and mineral resources where there is a direct geochemical application; and (7) Waste disposal, including nuclear waste disposal.
期刊最新文献
Human-induced eutrophication Alters mercury accumulation and speciation in sediments: A comparative analysis of Dianchi and Fuxian Lake, Southwestern China Mixed nitrogen inputs affected nitrate distribution and biogeochemical processes during ice-covered and ice-free periods in a boreal eutrophic steppe lake basin Country-scale lithogeochemical interpretation of stream sediment dataset in central Cameroon: Toward an integrated tool to support national geophysics surveys and geological mapping programs Increasing anthropogenic contributions on hydrochemical evolution of groundwater in the Yellow River basin over the past decade Unraveling hydrogen induced geochemical reaction mechanisms through coupled geochemical modeling and machine learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1