A review of medical text analysis: Theory and practice

IF 15.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Information Fusion Pub Date : 2025-02-19 DOI:10.1016/j.inffus.2025.103024
Yani Chen , Chunwu Zhang , Ruibin Bai , Tengfang Sun , Weiping Ding , Ruili Wang
{"title":"A review of medical text analysis: Theory and practice","authors":"Yani Chen ,&nbsp;Chunwu Zhang ,&nbsp;Ruibin Bai ,&nbsp;Tengfang Sun ,&nbsp;Weiping Ding ,&nbsp;Ruili Wang","doi":"10.1016/j.inffus.2025.103024","DOIUrl":null,"url":null,"abstract":"<div><div>Medical data analysis has emerged as an important driving force for smart healthcare with applications ranging from disease analysis to triage, diagnosis, and treatment. Text data plays a crucial role in providing contexts and details that other data types cannot capture alone, making its analysis an indispensable resource in medical research. Natural language processing, a key technology for analyzing and interpreting text, is essential for extracting meaningful insights from medical text data. This systematic review explores the analysis of text data in medicine, focusing on the applications of natural language processing methods. We retrieved a total of 4,784 publications from four databases. After applying rigorous exclusion criteria, 192 relevant publications are selected for in-depth analysis. These studies are evaluated from five critical perspectives: emerging trends of medical text analysis, commonly employed methodologies, major data sources, research topics, and applications in real-world problem-solving. Our analysis provides a comprehensive overview of the current state of medical text analysis, highlighting its advantages, limitations, and future potential. Finally, we identify key challenges and outline future research directions for advancing medical text analysis.</div></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"119 ","pages":"Article 103024"},"PeriodicalIF":15.5000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253525000971","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Medical data analysis has emerged as an important driving force for smart healthcare with applications ranging from disease analysis to triage, diagnosis, and treatment. Text data plays a crucial role in providing contexts and details that other data types cannot capture alone, making its analysis an indispensable resource in medical research. Natural language processing, a key technology for analyzing and interpreting text, is essential for extracting meaningful insights from medical text data. This systematic review explores the analysis of text data in medicine, focusing on the applications of natural language processing methods. We retrieved a total of 4,784 publications from four databases. After applying rigorous exclusion criteria, 192 relevant publications are selected for in-depth analysis. These studies are evaluated from five critical perspectives: emerging trends of medical text analysis, commonly employed methodologies, major data sources, research topics, and applications in real-world problem-solving. Our analysis provides a comprehensive overview of the current state of medical text analysis, highlighting its advantages, limitations, and future potential. Finally, we identify key challenges and outline future research directions for advancing medical text analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医学文本分析综述:理论与实践
医疗数据分析已成为智能医疗的重要推动力,其应用范围从疾病分析到分诊、诊断和治疗。文本数据在提供其他数据类型无法单独捕获的背景和细节方面发挥着至关重要的作用,使其分析成为医学研究中不可或缺的资源。自然语言处理是医学文本数据分析和解释的关键技术,是医学文本数据提取有意义信息的关键。本系统综述探讨了医学文本数据的分析,重点是自然语言处理方法的应用。我们从四个数据库中检索了总共4,784篇出版物。通过严格的排除标准,选取192篇相关文献进行深入分析。这些研究从五个关键角度进行评估:医学文本分析的新兴趋势、常用方法、主要数据来源、研究主题以及在现实世界问题解决中的应用。我们的分析提供了医学文本分析的现状的全面概述,突出其优势,局限性和未来的潜力。最后,我们确定了推进医学文本分析的关键挑战和概述了未来的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Fusion
Information Fusion 工程技术-计算机:理论方法
CiteScore
33.20
自引率
4.30%
发文量
161
审稿时长
7.9 months
期刊介绍: Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.
期刊最新文献
GeoCraft: A Diffusion Model-Based 3D Reconstruction Method Driven by Image and Point Cloud Fusion GC-Fed: Gradient Centralized Federated Learning with Partial Client Participation Editorial Board Arbitrary‑Scale Spatial–Spectral Fusion using Kernel Integral and Progressive Resampling Data science: a natural ecosystem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1