Variance reduction and measurement errors in estimating lactation milk yields using best prediction: An analytical review

Xiao-Lin Wu , Paul M. VanRaden , John Cole , H. Duane Norman
{"title":"Variance reduction and measurement errors in estimating lactation milk yields using best prediction: An analytical review","authors":"Xiao-Lin Wu ,&nbsp;Paul M. VanRaden ,&nbsp;John Cole ,&nbsp;H. Duane Norman","doi":"10.3168/jdsc.2024-0622","DOIUrl":null,"url":null,"abstract":"<div><div>Best prediction (BP) has been used in the United States to estimate unobserved daily and lactation yields from known test-day yields since 1999. This method has proven more accurate than its predecessors. However, it has 2 remarkable challenges in practice. First, BP reduces the variance of estimated yields compared with actual yields. Reduced phenotypic variance represents a concern because it can significantly underestimate genetic variations in genetic evaluations. Second, measurement errors occur in the projected lactation yields from incomplete or inaccurate test-day records. These errors can adversely affect the accuracy of lactation yield estimations and the subsequent genetic evaluations. This article provides an analytical review of BP, focusing on variance reduction and measurement errors. We demonstrate how variance reduction and measurement errors can be intrinsic to the method. Illustrative examples are presented, highlighting the practical challenges and possible solutions.</div></div>","PeriodicalId":94061,"journal":{"name":"JDS communications","volume":"6 2","pages":"Pages 231-236"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JDS communications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666910224001844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Best prediction (BP) has been used in the United States to estimate unobserved daily and lactation yields from known test-day yields since 1999. This method has proven more accurate than its predecessors. However, it has 2 remarkable challenges in practice. First, BP reduces the variance of estimated yields compared with actual yields. Reduced phenotypic variance represents a concern because it can significantly underestimate genetic variations in genetic evaluations. Second, measurement errors occur in the projected lactation yields from incomplete or inaccurate test-day records. These errors can adversely affect the accuracy of lactation yield estimations and the subsequent genetic evaluations. This article provides an analytical review of BP, focusing on variance reduction and measurement errors. We demonstrate how variance reduction and measurement errors can be intrinsic to the method. Illustrative examples are presented, highlighting the practical challenges and possible solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JDS communications
JDS communications Animal Science and Zoology
CiteScore
2.00
自引率
0.00%
发文量
0
期刊最新文献
Editorial Board Table of Contents A preliminary study on the effects of red Bonnemaisonia hamifera seaweed on methane emissions from dairy cows Testing preference of alfalfa hay of different relative feed value and brome hay in lactating Jersey cows greenfeedr: An R package for processing and reporting GreenFeed data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1