Safe comprehensive utilization of the hazardous secondary aluminum dross: Mechanism and technology

IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Environmental Chemical Engineering Pub Date : 2025-02-25 DOI:10.1016/j.jece.2025.115939
Jinquan Wen , Guihua Liu , Tiangui Qi , Qiusheng Zhou , Zhihong Peng , Leiting Shen , Yilin Wang , Zhiqiang Shi , Jiaping Zhao
{"title":"Safe comprehensive utilization of the hazardous secondary aluminum dross: Mechanism and technology","authors":"Jinquan Wen ,&nbsp;Guihua Liu ,&nbsp;Tiangui Qi ,&nbsp;Qiusheng Zhou ,&nbsp;Zhihong Peng ,&nbsp;Leiting Shen ,&nbsp;Yilin Wang ,&nbsp;Zhiqiang Shi ,&nbsp;Jiaping Zhao","doi":"10.1016/j.jece.2025.115939","DOIUrl":null,"url":null,"abstract":"<div><div>Secondary aluminum dross (SAD) is a hazardous waste generated from aluminum electrolytes, processing, and regeneration. To comprehensively utilize SAD, this review critically evaluated various approaches to transforming SAD into value-added products, reaction mechanisms and treatments of harmful elements. The changeable composition and inhomogeneous phases of SAD were clearly identified, leading to the low extraction efficiency of alumina, the poor quality of alumina-bearing materials and difficult operation in practice. Reaction mechanism of Al, AlN, α-Al<sub>2</sub>O<sub>3</sub> and salts has been carefully summarized. The aluminum-bearing substances embedded by Al<sub>2</sub>O<sub>3</sub> layer or Al(OH)<sub>3</sub> layer notably reduced the reaction efficiency. The mutually embedded phases and the rich bubbles in the aqueous solution notably changed the reaction behavior of the active aluminum-bearing substances and salts. Afterwards, technologies for comprehensive utilization of SAD were summarized according to pyrometallurgy, hydrometallurgy and combination of pyro/hydrometallurgy. Calcium aluminate and sodium aluminate by roasting process, preparation of alumina-bearing materials after wet-pretreatment for impurity removal, and production of alumina and water purificant from combination of pyro-hydrometallurgy were further discussed. In addition, harmful gases, detrimental ions (F<sup>-</sup>, Cl<sup>-</sup> and NH<sub>4</sub><sup>+</sup>), and salts in alumina-bearing materials all limited SAD utilization owing to the environmental risk. With the integration of safety, efficiency and performance, economical comprehensive utilization of SAD was proposed by integrating alumina production, industrial ceramics, and cements on the basis of aluminum industry chain. The bottleneck of environmental risk and roadmap of SAD utilization were finally provided for the safe comprehensive utilization of SAD.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"13 2","pages":"Article 115939"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343725006359","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Secondary aluminum dross (SAD) is a hazardous waste generated from aluminum electrolytes, processing, and regeneration. To comprehensively utilize SAD, this review critically evaluated various approaches to transforming SAD into value-added products, reaction mechanisms and treatments of harmful elements. The changeable composition and inhomogeneous phases of SAD were clearly identified, leading to the low extraction efficiency of alumina, the poor quality of alumina-bearing materials and difficult operation in practice. Reaction mechanism of Al, AlN, α-Al2O3 and salts has been carefully summarized. The aluminum-bearing substances embedded by Al2O3 layer or Al(OH)3 layer notably reduced the reaction efficiency. The mutually embedded phases and the rich bubbles in the aqueous solution notably changed the reaction behavior of the active aluminum-bearing substances and salts. Afterwards, technologies for comprehensive utilization of SAD were summarized according to pyrometallurgy, hydrometallurgy and combination of pyro/hydrometallurgy. Calcium aluminate and sodium aluminate by roasting process, preparation of alumina-bearing materials after wet-pretreatment for impurity removal, and production of alumina and water purificant from combination of pyro-hydrometallurgy were further discussed. In addition, harmful gases, detrimental ions (F-, Cl- and NH4+), and salts in alumina-bearing materials all limited SAD utilization owing to the environmental risk. With the integration of safety, efficiency and performance, economical comprehensive utilization of SAD was proposed by integrating alumina production, industrial ceramics, and cements on the basis of aluminum industry chain. The bottleneck of environmental risk and roadmap of SAD utilization were finally provided for the safe comprehensive utilization of SAD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental Chemical Engineering
Journal of Environmental Chemical Engineering Environmental Science-Pollution
CiteScore
11.40
自引率
6.50%
发文量
2017
审稿时长
27 days
期刊介绍: The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.
期刊最新文献
Catalytic oxidation of volatile organic compounds by plasma–metal oxide coupling Microalgae bioinputs as disruptive technology for a sustainable agriculture: A systematic and bibliometric review Next-generation brackish water treatment: Exploring dual-ion capacitive deionization Optimizing membrane dehumidification performance: A comprehensive review of materials, modules and system Sustainable green synthesis of silver nanoparticles for safer biomedical application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1