{"title":"Pioneering advancements in quantum dot solar cells: Innovations in synthesis and cutting-edge applications","authors":"Shailesh Narain Sharma , Pooja Semalti , Bhawna , A. Srinivas Rao","doi":"10.1016/j.cocis.2025.101905","DOIUrl":null,"url":null,"abstract":"<div><div>This review explores the potential of Quantum Dot Solar Cells (QDSCs) in revolutionizing photovoltaic technology. By leveraging the unique properties of quantum dots, QDSCs promise enhanced efficiency and lower production costs. Key innovations like tandem quantum dot solar cells (TQDSCs) and hybrid organic-quantum dot (HQD) solar cells are highlighted for their ability to absorb a broader light spectrum and combine organic semiconductors with quantum dots.</div><div>However, challenges such as long-term stability, material toxicity, and scalability remain obstacles to commercial viability. The review calls for continued research into non-toxic materials, better encapsulation techniques, and cost-effective manufacturing processes. A forward-looking perspective emphasizes that interdisciplinary efforts are crucial for integrating QDSCs into the renewable energy landscape, potentially driving a more sustainable future.</div></div>","PeriodicalId":293,"journal":{"name":"Current Opinion in Colloid & Interface Science","volume":"77 ","pages":"Article 101905"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Colloid & Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359029425000111","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This review explores the potential of Quantum Dot Solar Cells (QDSCs) in revolutionizing photovoltaic technology. By leveraging the unique properties of quantum dots, QDSCs promise enhanced efficiency and lower production costs. Key innovations like tandem quantum dot solar cells (TQDSCs) and hybrid organic-quantum dot (HQD) solar cells are highlighted for their ability to absorb a broader light spectrum and combine organic semiconductors with quantum dots.
However, challenges such as long-term stability, material toxicity, and scalability remain obstacles to commercial viability. The review calls for continued research into non-toxic materials, better encapsulation techniques, and cost-effective manufacturing processes. A forward-looking perspective emphasizes that interdisciplinary efforts are crucial for integrating QDSCs into the renewable energy landscape, potentially driving a more sustainable future.
期刊介绍:
Current Opinion in Colloid and Interface Science (COCIS) is an international journal that focuses on the molecular and nanoscopic aspects of colloidal systems and interfaces in various scientific and technological fields. These include materials science, biologically-relevant systems, energy and environmental technologies, and industrial applications.
Unlike primary journals, COCIS primarily serves as a guide for researchers, helping them navigate through the vast landscape of recently published literature. It critically analyzes the state of the art, identifies bottlenecks and unsolved issues, and proposes future developments.
Moreover, COCIS emphasizes certain areas and papers that are considered particularly interesting and significant by the Editors and Section Editors. Its goal is to provide valuable insights and updates to the research community in these specialized areas.