Stochastic Sequential Sensory Selection for Gesture Recognition in KineticoMyoGraphy Guided Bionic Hands

IF 3.4 Q2 ENGINEERING, BIOMEDICAL IEEE transactions on medical robotics and bionics Pub Date : 2024-11-21 DOI:10.1109/TMRB.2024.3503993
Arman Abasian;Hamed Rafiei;Mohammad-R. Akbarzadeh-T.;Alireza Akbarzadeh;Ali Moradi;Amir-M. Naddaf-Sh
{"title":"Stochastic Sequential Sensory Selection for Gesture Recognition in KineticoMyoGraphy Guided Bionic Hands","authors":"Arman Abasian;Hamed Rafiei;Mohammad-R. Akbarzadeh-T.;Alireza Akbarzadeh;Ali Moradi;Amir-M. Naddaf-Sh","doi":"10.1109/TMRB.2024.3503993","DOIUrl":null,"url":null,"abstract":"KineticoMyoGraphy (KMG) is an emerging sensor technology offering innovative solutions for tracking amputees’ fine muscle movements, promising better hand gesture recognition with greater sustainability than existing methods. The primary challenge in KMG technology lies in the required number and placement of magnetic sensors to balance accuracy, sustainability, and cost-efficiency for practical hand gesture interpretation. To tackle this issue, we propose a Stochastic Sequential Strategy for Magnetic Sensory Selection (S3MSS). We apply this strategy to a configuration of 16 magnetic sensors surrounding surgically implanted magnets in a patient’s forearm. The method uses an Error-Correcting Output Codes (ECOC) framework with Multiclass Linear Discriminant Analysis (MCLDA) and Multiclass Support Vector Machines (MCSVM). Our approach emphasizes robust sensory selection and consistent performance through time-based seeding and K-fold cross-validation. Clinical results indicate consistency in sensory selection across two independent trials, underlining this factor as crucial for reliability. Statistical significance test confirms the superiority of the MCLDA over the MCSVM approach, achieving a 93% accuracy in the classification of Fingers, Wrist, and Thumb gestures using only five sensors near the magnets’ motion range. This underscores our strategy’s effectiveness in accurately detecting hand movements, highlighting its potential for clinical application and improving amputees’ quality of life.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"325-336"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10759833/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

KineticoMyoGraphy (KMG) is an emerging sensor technology offering innovative solutions for tracking amputees’ fine muscle movements, promising better hand gesture recognition with greater sustainability than existing methods. The primary challenge in KMG technology lies in the required number and placement of magnetic sensors to balance accuracy, sustainability, and cost-efficiency for practical hand gesture interpretation. To tackle this issue, we propose a Stochastic Sequential Strategy for Magnetic Sensory Selection (S3MSS). We apply this strategy to a configuration of 16 magnetic sensors surrounding surgically implanted magnets in a patient’s forearm. The method uses an Error-Correcting Output Codes (ECOC) framework with Multiclass Linear Discriminant Analysis (MCLDA) and Multiclass Support Vector Machines (MCSVM). Our approach emphasizes robust sensory selection and consistent performance through time-based seeding and K-fold cross-validation. Clinical results indicate consistency in sensory selection across two independent trials, underlining this factor as crucial for reliability. Statistical significance test confirms the superiority of the MCLDA over the MCSVM approach, achieving a 93% accuracy in the classification of Fingers, Wrist, and Thumb gestures using only five sensors near the magnets’ motion range. This underscores our strategy’s effectiveness in accurately detecting hand movements, highlighting its potential for clinical application and improving amputees’ quality of life.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机序列感官选择用于 KineticoMyoGraphy 导向仿生手的手势识别
KMG(KineticoMyoGraphy)是一种新兴的传感器技术,它为追踪截肢者的精细肌肉运动提供了创新的解决方案,与现有方法相比,KMG有望实现更好的手势识别,并具有更强的可持续性。KMG 技术面临的主要挑战在于如何在实际手势解读所需的磁性传感器数量和位置之间取得平衡,从而兼顾准确性、可持续性和成本效益。为解决这一问题,我们提出了磁感应选择随机序列策略(S3MSS)。我们将该策略应用于病人前臂手术植入磁铁周围的 16 个磁传感器配置。该方法采用纠错输出代码 (ECOC) 框架,并配有多类线性判别分析 (MCLDA) 和多类支持向量机 (MCSVM)。我们的方法强调稳健的感官选择,并通过基于时间的播种和 K 倍交叉验证实现一致的性能。临床结果表明,在两个独立的试验中,感官选择具有一致性,强调了这一因素对于可靠性的重要性。统计显著性测试证实了 MCLDA 优于 MCSVM 方法,仅使用磁铁运动范围附近的五个传感器,手指、手腕和拇指手势的分类准确率就达到了 93%。这凸显了我们的策略在准确检测手部运动方面的有效性,突出了其在临床应用和改善截肢者生活质量方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Public Value Management
IF 0 The American Review of Public AdministrationPub Date : 2006-03-01 DOI: 10.1177/0275074005282583
G. Stoker
Rethinking Value‐Based Management
IF 0 Handbook of Business StrategyPub Date : 1900-01-01 DOI: 10.1108/EB060282
E. Olsen
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Transactions on Medical Robotics and Bionics Information for Authors IEEE Transactions on Medical Robotics and Bionics Society Information Guest Editorial BioRob2024 IEEE Transactions on Medical Robotics and Bionics Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1