{"title":"Design and Mathematical Modeling of a Novel Two-Degree-of-Freedom Robot-Assisted Cardiac Catheterization System","authors":"Naman Gupta;Dhruva Khanzode;Ranjan Jha","doi":"10.1109/TMRB.2024.3503911","DOIUrl":null,"url":null,"abstract":"Cardiovascular diseases, driven by pollution and unhealthy lifestyle factors, are commonly treated with cardiac catheterization. However, this exposes medical staff to harmful X-ray radiation, leading to the development of robot-assisted catheterization systems for safer procedures. Despite their advantages, existing robotic systems are frequently complex and struggle with catheter maneuverability without a guidewire. This paper introduces a novel two-degree-of-freedom robot-assisted cardiac catheterization system, detailing its development, evaluation, and mathematical modeling. The system is designed for precise control of catheter motion through both translational and rotational movements, enhancing procedural efficiency and safety. We provide an in-depth analysis of deformation forces, stress, and strain characteristics based on catheter materials, supported by comprehensive mathematical modeling of applied forces and torques. Simulation results show that the system requires a torque of 1.870 Nm, a displacement of 0.089 m, and a velocity of 1.450 m/s for translational motion. For rotational motion, the system demands 0.915 Nm of torque, an angle of 5.102 rad, and an angular velocity of 88.735 rad/s. These results are validated against pre-existing models to confirm the system’s performance. The study concludes by presenting a three-dimensional (3D) model of the system, demonstrating its ability to improve the safety and precision of cardiac catheterization.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"230-241"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10759838/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular diseases, driven by pollution and unhealthy lifestyle factors, are commonly treated with cardiac catheterization. However, this exposes medical staff to harmful X-ray radiation, leading to the development of robot-assisted catheterization systems for safer procedures. Despite their advantages, existing robotic systems are frequently complex and struggle with catheter maneuverability without a guidewire. This paper introduces a novel two-degree-of-freedom robot-assisted cardiac catheterization system, detailing its development, evaluation, and mathematical modeling. The system is designed for precise control of catheter motion through both translational and rotational movements, enhancing procedural efficiency and safety. We provide an in-depth analysis of deformation forces, stress, and strain characteristics based on catheter materials, supported by comprehensive mathematical modeling of applied forces and torques. Simulation results show that the system requires a torque of 1.870 Nm, a displacement of 0.089 m, and a velocity of 1.450 m/s for translational motion. For rotational motion, the system demands 0.915 Nm of torque, an angle of 5.102 rad, and an angular velocity of 88.735 rad/s. These results are validated against pre-existing models to confirm the system’s performance. The study concludes by presenting a three-dimensional (3D) model of the system, demonstrating its ability to improve the safety and precision of cardiac catheterization.