Suppression of Drain-Bias-Induced VTH Instability in Schottky-Type p-GaN Gate HEMTs With Voltage Seatbelt

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2025-02-10 DOI:10.1109/TED.2025.3534168
Junting Chen;Haohao Chen;Yan Cheng;Jiongchong Fang;Zheng Wu;Junqiang Li;Jinjin Tang;Guosong Zeng;Kevin J. Chen;Mengyuan Hua
{"title":"Suppression of Drain-Bias-Induced VTH Instability in Schottky-Type p-GaN Gate HEMTs With Voltage Seatbelt","authors":"Junting Chen;Haohao Chen;Yan Cheng;Jiongchong Fang;Zheng Wu;Junqiang Li;Jinjin Tang;Guosong Zeng;Kevin J. Chen;Mengyuan Hua","doi":"10.1109/TED.2025.3534168","DOIUrl":null,"url":null,"abstract":"A cost-effective yet efficient approach is proposed for suppressing the drain-bias-induced threshold voltage (<inline-formula> <tex-math>${V} _{\\text {TH}}$ </tex-math></inline-formula>) instability in Schottky-type p-gallium nitride (GaN) gate high electron mobility transistors (HEMTs). The proposed device consists of a source-connected metal layer on a dielectric layer in the gate-to-drain access region, which operates as a voltage seatbelt that restricts the voltage coupling to the p-GaN region from the drain within a defined range. By adjusting the dielectric thickness in the proposed structure, the voltage potential experienced by the p-GaN region is confined within a range of 3.1–22.3 V at a drain voltage (<inline-formula> <tex-math>${V} _{\\text {DS}}$ </tex-math></inline-formula>) of 400 V. In the scenario with a 3.1-V clamping voltage, the proposed configuration demonstrates a remarkable reduction of over 95% in <inline-formula> <tex-math>${V} _{\\text {TH}}$ </tex-math></inline-formula> shift caused by the floating nature of p-GaN, along with a reduction of 88% in <inline-formula> <tex-math>${V} _{\\text {TH}}$ </tex-math></inline-formula> shift induced by trapping effects. The proposed structure also enhances short-circuit robustness by reducing the saturation current density, while exerting only a minimal effect on the devices’ on-resistance (<inline-formula> <tex-math>${R} _{\\text {ON}}$ </tex-math></inline-formula>). The proposed structure offers room for balancing the tradeoff between the <inline-formula> <tex-math>${R} _{\\text {ON}}$ </tex-math></inline-formula> and the short-circuit robustness in practical applications.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 3","pages":"1041-1046"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10879105/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A cost-effective yet efficient approach is proposed for suppressing the drain-bias-induced threshold voltage ( ${V} _{\text {TH}}$ ) instability in Schottky-type p-gallium nitride (GaN) gate high electron mobility transistors (HEMTs). The proposed device consists of a source-connected metal layer on a dielectric layer in the gate-to-drain access region, which operates as a voltage seatbelt that restricts the voltage coupling to the p-GaN region from the drain within a defined range. By adjusting the dielectric thickness in the proposed structure, the voltage potential experienced by the p-GaN region is confined within a range of 3.1–22.3 V at a drain voltage ( ${V} _{\text {DS}}$ ) of 400 V. In the scenario with a 3.1-V clamping voltage, the proposed configuration demonstrates a remarkable reduction of over 95% in ${V} _{\text {TH}}$ shift caused by the floating nature of p-GaN, along with a reduction of 88% in ${V} _{\text {TH}}$ shift induced by trapping effects. The proposed structure also enhances short-circuit robustness by reducing the saturation current density, while exerting only a minimal effect on the devices’ on-resistance ( ${R} _{\text {ON}}$ ). The proposed structure offers room for balancing the tradeoff between the ${R} _{\text {ON}}$ and the short-circuit robustness in practical applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用电压安全带抑制肖特基型 p-GaN 栅极 HEMT 中漏极偏压引发的 VTH 不稳定性
本文提出了一种经济高效的方法,用于抑制肖特基型对氮化镓(GaN)栅高电子迁移率晶体管(HEMT)中漏极偏置引起的阈值电压(${V} _{text\ {TH}}$ )不稳定性。该器件在栅极到漏极接入区的介电层上有一个源极连接金属层,该金属层起到电压安全带的作用,将从漏极耦合到 p-GaN 区的电压限制在一个确定的范围内。通过调整拟议结构中的电介质厚度,当漏极电压(${V} _\text {DS}}$)为 400 V 时,p-GaN 区域所经历的电压电势被限制在 3.1-22.3 V 的范围内。由于 p-GaN 的浮动特性而导致的 ${V} _{\text {TH}}$ 漂移显著减少了 95%,同时 ${V} _{\text {TH}}$ 也减少了 88%。_{\text {TH}}$ 漂移降低了 88%。所提出的结构还通过降低饱和电流密度增强了短路稳健性,同时对器件的导通电阻(${R} _{\text {ON}}$)影响极小。所提出的结构为在实际应用中平衡 ${R} _{\text {ON}}$ 和短路鲁棒性之间的权衡提供了空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents IEEE Transactions on Electron Devices Publication Information Corrections to “Stimulated Secondary Emission of Single-Photon Avalanche Diodes” Call for Papers: Journal of Lightwave Technology Special Issue on OFS-29 Call for Nominations for Editor-in-Chief: IEEE Transactions on Semiconductor Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1