{"title":"A Detailed Examination of Polysilicon Resistivity Incorporating the Grain Size Distribution","authors":"Mikael Santonen;Antti Lahti;Zahra Jahanshah Rad;Mikko Miettinen;Masoud Ebrahimzadeh;Juha-Pekka Lehtiö;Enni Snellman;Pekka Laukkanen;Marko Punkkinen;Kalevi Kokko;Katja Parkkinen;Markus Eklund","doi":"10.1109/TED.2025.3530865","DOIUrl":null,"url":null,"abstract":"Current transport in polysilicon is a complicated process with many factors to consider. The inhomogeneous nature of polysilicon with its differently shaped and sized grains is one such consideration. We have developed a method that enhances existing resistivity models with a 2-D extension that incorporates the grain size distribution using a Voronoi-based resistor network. We obtain grain size distributions both from our growth simulations (700, 800, and 900 K) and experimental analysis. Applying our method, we investigate the effect that variation in grain size produces with cases of different average grain sizes (2 nm–<inline-formula> <tex-math>$3~\\mu $ </tex-math></inline-formula>m). For example, the resistivity of polysilicon with an average grain size of 175 nm drops from 11 to 4.5 k<inline-formula> <tex-math>$\\Omega \\cdot $ </tex-math></inline-formula>cm when compared with conventional 1-D modeling. Our study highlights the strong effect of grain size variation on resistivity, revealing that wider distributions result in significant resistivity reductions of up to more than 50%. Due to larger grains present with a grain size distribution, current transport encounters fewer grain boundaries while the average grain size remains the same resulting in fewer barriers along the current transport path. Incorporating the grain structure into the resistivity modeling facilitates a more detailed and comprehensive characterization of the electrical properties of polysilicon.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 3","pages":"1184-1190"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10857810","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10857810/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Current transport in polysilicon is a complicated process with many factors to consider. The inhomogeneous nature of polysilicon with its differently shaped and sized grains is one such consideration. We have developed a method that enhances existing resistivity models with a 2-D extension that incorporates the grain size distribution using a Voronoi-based resistor network. We obtain grain size distributions both from our growth simulations (700, 800, and 900 K) and experimental analysis. Applying our method, we investigate the effect that variation in grain size produces with cases of different average grain sizes (2 nm–$3~\mu $ m). For example, the resistivity of polysilicon with an average grain size of 175 nm drops from 11 to 4.5 k$\Omega \cdot $ cm when compared with conventional 1-D modeling. Our study highlights the strong effect of grain size variation on resistivity, revealing that wider distributions result in significant resistivity reductions of up to more than 50%. Due to larger grains present with a grain size distribution, current transport encounters fewer grain boundaries while the average grain size remains the same resulting in fewer barriers along the current transport path. Incorporating the grain structure into the resistivity modeling facilitates a more detailed and comprehensive characterization of the electrical properties of polysilicon.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.