A Detailed Examination of Polysilicon Resistivity Incorporating the Grain Size Distribution

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2025-01-29 DOI:10.1109/TED.2025.3530865
Mikael Santonen;Antti Lahti;Zahra Jahanshah Rad;Mikko Miettinen;Masoud Ebrahimzadeh;Juha-Pekka Lehtiö;Enni Snellman;Pekka Laukkanen;Marko Punkkinen;Kalevi Kokko;Katja Parkkinen;Markus Eklund
{"title":"A Detailed Examination of Polysilicon Resistivity Incorporating the Grain Size Distribution","authors":"Mikael Santonen;Antti Lahti;Zahra Jahanshah Rad;Mikko Miettinen;Masoud Ebrahimzadeh;Juha-Pekka Lehtiö;Enni Snellman;Pekka Laukkanen;Marko Punkkinen;Kalevi Kokko;Katja Parkkinen;Markus Eklund","doi":"10.1109/TED.2025.3530865","DOIUrl":null,"url":null,"abstract":"Current transport in polysilicon is a complicated process with many factors to consider. The inhomogeneous nature of polysilicon with its differently shaped and sized grains is one such consideration. We have developed a method that enhances existing resistivity models with a 2-D extension that incorporates the grain size distribution using a Voronoi-based resistor network. We obtain grain size distributions both from our growth simulations (700, 800, and 900 K) and experimental analysis. Applying our method, we investigate the effect that variation in grain size produces with cases of different average grain sizes (2 nm–<inline-formula> <tex-math>$3~\\mu $ </tex-math></inline-formula>m). For example, the resistivity of polysilicon with an average grain size of 175 nm drops from 11 to 4.5 k<inline-formula> <tex-math>$\\Omega \\cdot $ </tex-math></inline-formula>cm when compared with conventional 1-D modeling. Our study highlights the strong effect of grain size variation on resistivity, revealing that wider distributions result in significant resistivity reductions of up to more than 50%. Due to larger grains present with a grain size distribution, current transport encounters fewer grain boundaries while the average grain size remains the same resulting in fewer barriers along the current transport path. Incorporating the grain structure into the resistivity modeling facilitates a more detailed and comprehensive characterization of the electrical properties of polysilicon.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 3","pages":"1184-1190"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10857810","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10857810/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Current transport in polysilicon is a complicated process with many factors to consider. The inhomogeneous nature of polysilicon with its differently shaped and sized grains is one such consideration. We have developed a method that enhances existing resistivity models with a 2-D extension that incorporates the grain size distribution using a Voronoi-based resistor network. We obtain grain size distributions both from our growth simulations (700, 800, and 900 K) and experimental analysis. Applying our method, we investigate the effect that variation in grain size produces with cases of different average grain sizes (2 nm– $3~\mu $ m). For example, the resistivity of polysilicon with an average grain size of 175 nm drops from 11 to 4.5 k $\Omega \cdot $ cm when compared with conventional 1-D modeling. Our study highlights the strong effect of grain size variation on resistivity, revealing that wider distributions result in significant resistivity reductions of up to more than 50%. Due to larger grains present with a grain size distribution, current transport encounters fewer grain boundaries while the average grain size remains the same resulting in fewer barriers along the current transport path. Incorporating the grain structure into the resistivity modeling facilitates a more detailed and comprehensive characterization of the electrical properties of polysilicon.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合晶粒尺寸分布详细研究多晶硅电阻率
多晶硅中的电流传输是一个复杂的过程,需要考虑很多因素。多晶硅的非均质性及其不同形状和尺寸的晶粒就是考虑因素之一。我们开发了一种方法,利用基于 Voronoi 的电阻网络将晶粒尺寸分布纳入二维扩展,从而增强了现有的电阻率模型。我们从生长模拟(700、800 和 900 K)和实验分析中获得了晶粒尺寸分布。应用我们的方法,我们研究了不同平均晶粒尺寸(2 nm- $3~\mu $ m)情况下晶粒尺寸变化产生的影响。例如,与传统的一维建模相比,平均晶粒尺寸为 175 nm 的多晶硅的电阻率从 11 k $Omega \cdot $ cm 下降到 4.5 k $Omega \cdot $ cm。我们的研究强调了晶粒尺寸变化对电阻率的强烈影响,揭示了更宽的分布会导致电阻率显著降低,降幅可达 50%以上。由于晶粒尺寸分布中存在较大的晶粒,电流传输遇到的晶粒边界较少,而平均晶粒尺寸保持不变,因此电流传输路径上的障碍较少。将晶粒结构纳入电阻率建模有助于更详细、更全面地描述多晶硅的电气特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents IEEE Transactions on Electron Devices Publication Information Corrections to “Stimulated Secondary Emission of Single-Photon Avalanche Diodes” Call for Papers: Journal of Lightwave Technology Special Issue on OFS-29 Call for Nominations for Editor-in-Chief: IEEE Transactions on Semiconductor Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1