Explainable AI-Guided Optimization of EMG Channels and Features for Precise Hand Gesture Classification: A SHAP-Based Study

IF 3.4 Q2 ENGINEERING, BIOMEDICAL IEEE transactions on medical robotics and bionics Pub Date : 2024-11-22 DOI:10.1109/TMRB.2024.3504007
Parul Rani;Sidharth Pancholi;Vikash Shaw;Suraj Pandey;Manfredo Atzori;Sanjeev Kumar
{"title":"Explainable AI-Guided Optimization of EMG Channels and Features for Precise Hand Gesture Classification: A SHAP-Based Study","authors":"Parul Rani;Sidharth Pancholi;Vikash Shaw;Suraj Pandey;Manfredo Atzori;Sanjeev Kumar","doi":"10.1109/TMRB.2024.3504007","DOIUrl":null,"url":null,"abstract":"Extraction of the correct and efficient descriptors of muscular activity plays a vital role in tackling the challenging problem of myoelectric control of powered prostheses. This work presents a feature extraction framework that aims to enhance the representation of muscular activities by increasing the amount of information that can be extracted from individual and combined electromyogram (EMG) channels. The proposed method for feature selection is based on Shapley Additive explanations (SHAP). The SHAP value is used to reduce the feature dimension. The proposed approach has been evaluated on two datasets obtained at a sampling rate of 1 kHz through a band consisting of seven EMG channels. The Standard deviation (SD) and Integrated EMG (IEMG) of electrodes 3, 5, 6, and 7 recognized four motions with a classification accuracy of 98.42%±1.16% and six gestures with a classification accuracy of 96.6%±0.91%, respectively. In the present work, an ensemble technique called bagging in the random forest algorithm has been used to obtain the optimum results.","PeriodicalId":73318,"journal":{"name":"IEEE transactions on medical robotics and bionics","volume":"7 1","pages":"368-376"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on medical robotics and bionics","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10766425/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Extraction of the correct and efficient descriptors of muscular activity plays a vital role in tackling the challenging problem of myoelectric control of powered prostheses. This work presents a feature extraction framework that aims to enhance the representation of muscular activities by increasing the amount of information that can be extracted from individual and combined electromyogram (EMG) channels. The proposed method for feature selection is based on Shapley Additive explanations (SHAP). The SHAP value is used to reduce the feature dimension. The proposed approach has been evaluated on two datasets obtained at a sampling rate of 1 kHz through a band consisting of seven EMG channels. The Standard deviation (SD) and Integrated EMG (IEMG) of electrodes 3, 5, 6, and 7 recognized four motions with a classification accuracy of 98.42%±1.16% and six gestures with a classification accuracy of 96.6%±0.91%, respectively. In the present work, an ensemble technique called bagging in the random forest algorithm has been used to obtain the optimum results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Transactions on Medical Robotics and Bionics Information for Authors IEEE Transactions on Medical Robotics and Bionics Society Information Guest Editorial BioRob2024 IEEE Transactions on Medical Robotics and Bionics Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1