Mechanical Properties and Corrosion Behavior of Porous Zn Alloy as Biodegradable Materials

IF 2.9 2区 材料科学 Q2 METALLURGY & METALLURGICAL ENGINEERING Acta Metallurgica Sinica-English Letters Pub Date : 2025-01-09 DOI:10.1007/s40195-024-01808-8
Xiaotong Lu, Pingyun Yuan, Zhengquan Wang, Xiaocheng Li, Hanyuan Liu, Wenhao Zhou, Kun Sun, Yongliang Mu
{"title":"Mechanical Properties and Corrosion Behavior of Porous Zn Alloy as Biodegradable Materials","authors":"Xiaotong Lu,&nbsp;Pingyun Yuan,&nbsp;Zhengquan Wang,&nbsp;Xiaocheng Li,&nbsp;Hanyuan Liu,&nbsp;Wenhao Zhou,&nbsp;Kun Sun,&nbsp;Yongliang Mu","doi":"10.1007/s40195-024-01808-8","DOIUrl":null,"url":null,"abstract":"<div><p>The complex stresses experienced by medical-grade porous metals in the physiological environment following implantation as bone repair materials necessitate a comprehensive understanding of their mechanical behavior. This paper investigates the effects of pore structure and matrix composition on the corrosion behavior and mechanical properties of pure Zn. Porous Zn alloys with varying pore sizes were prepared via vacuum infiltration casting. The results showed that addition of Mg elements and an increase in pore size were observed to enhance the strength and elastic modulus of the porous Zn alloy (41.34 ± 0.113 MPa and 0.58 ± 0.02 GPa of the C-Z3AM). However, corrosion tests indicated that specimens with smaller pores and the addition of Mg elements exhibited accelerated corrosion of porous Zn alloys in Hank’s solution. Electrochemical test results show the corrosion resistance rank in order of C-Z5A &gt; C-Z3AM &gt; N-Z5A &gt; N-Z3AM. Additionally, the mechanical retention of porous Zn alloys in simulated body fluids was found to be significantly reduced by the incorporation of Mg elements and smaller pore sizes, the yield strength declines rates of C-Z5A, C-Z3AM and N-Z3AM after 30 days of immersion were 16.7%, 63.7% and 78.2%, respectively. The objective is to establish the role of the material-structure-corrosion-mechanics relationship, which can provide a theoretical and experimental basis for the design and evaluation of Zn and its alloy implanted devices.</p></div>","PeriodicalId":457,"journal":{"name":"Acta Metallurgica Sinica-English Letters","volume":"38 3","pages":"367 - 382"},"PeriodicalIF":2.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Metallurgica Sinica-English Letters","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1007/s40195-024-01808-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The complex stresses experienced by medical-grade porous metals in the physiological environment following implantation as bone repair materials necessitate a comprehensive understanding of their mechanical behavior. This paper investigates the effects of pore structure and matrix composition on the corrosion behavior and mechanical properties of pure Zn. Porous Zn alloys with varying pore sizes were prepared via vacuum infiltration casting. The results showed that addition of Mg elements and an increase in pore size were observed to enhance the strength and elastic modulus of the porous Zn alloy (41.34 ± 0.113 MPa and 0.58 ± 0.02 GPa of the C-Z3AM). However, corrosion tests indicated that specimens with smaller pores and the addition of Mg elements exhibited accelerated corrosion of porous Zn alloys in Hank’s solution. Electrochemical test results show the corrosion resistance rank in order of C-Z5A > C-Z3AM > N-Z5A > N-Z3AM. Additionally, the mechanical retention of porous Zn alloys in simulated body fluids was found to be significantly reduced by the incorporation of Mg elements and smaller pore sizes, the yield strength declines rates of C-Z5A, C-Z3AM and N-Z3AM after 30 days of immersion were 16.7%, 63.7% and 78.2%, respectively. The objective is to establish the role of the material-structure-corrosion-mechanics relationship, which can provide a theoretical and experimental basis for the design and evaluation of Zn and its alloy implanted devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Metallurgica Sinica-English Letters
Acta Metallurgica Sinica-English Letters METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.60
自引率
14.30%
发文量
122
审稿时长
2 months
期刊介绍: This international journal presents compact reports of significant, original and timely research reflecting progress in metallurgy, materials science and engineering, including materials physics, physical metallurgy, and process metallurgy.
期刊最新文献
Effect of K2HPO4 Concentration on the Formation, Structure, Composition and Protectiveness of Conversion Coating Deposited on AZ31 Magnesium Alloy In Vitro Corrosion Behavior and Mechanical Property of Novel Mg–Sn–In–Ga Alloys for Orthopedic Applications Copper Precipitation Behavior and Mechanical Properties of Cu-Bearing Ferritic Stainless Steel with Different Cr Addition A Novel BCC/B2 Structural Nb38Ti35Al15V6Cr4(TaHfMoW)2 Refractory High-Entropy Alloy with Excellent Specific Yield Strength-Plasticity Synergy Roles of Y2Zr2O7 Nano-Oxides in Helium Management in ODS Ferritic Alloys: A First-Principles Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1