Effects of Perforation Size and Compression on Water Removal From Structure-Modified Diffusion Media in PEFC

IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Fuel Cells Pub Date : 2025-03-01 DOI:10.1002/fuce.70001
Kosuke Nishida, Tatsuki Furukawa, Reiya Kaneko
{"title":"Effects of Perforation Size and Compression on Water Removal From Structure-Modified Diffusion Media in PEFC","authors":"Kosuke Nishida,&nbsp;Tatsuki Furukawa,&nbsp;Reiya Kaneko","doi":"10.1002/fuce.70001","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To alleviate water flooding in cathode electrodes of polymer electrolyte fuel cells (PEFCs), it is necessary to understand the water transport inside diffusion media and design the electrode/channel structure for facilitating the water discharge from porous electrodes to gas channels. The authors proposed the novel modified structure combining the electrode perforation with the channel hydrophilization in their previous study and revealed that its structure has the possibility of encouraging the through-plane water removal from the diffusion media and the oxygen diffusivity to the reaction sites. This study investigated the effects of perforation size and cell compression on the water transport in the cathode diffusion media of the structure-modified cell using x-ray radiography. The constant current operation tests were also conducted to characterize the cell performance. It was shown that the 300 µm perforation and low compression have a large effect on encouraging the in-plane water drainage from the diffusion media to the groove or hole, resulting in reducing the voltage loss due to the water flooding. This innovative structural modification can be put to practical use because of its simple manufacturing process and low cost.</p>\n </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 2","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Cells","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fuce.70001","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

To alleviate water flooding in cathode electrodes of polymer electrolyte fuel cells (PEFCs), it is necessary to understand the water transport inside diffusion media and design the electrode/channel structure for facilitating the water discharge from porous electrodes to gas channels. The authors proposed the novel modified structure combining the electrode perforation with the channel hydrophilization in their previous study and revealed that its structure has the possibility of encouraging the through-plane water removal from the diffusion media and the oxygen diffusivity to the reaction sites. This study investigated the effects of perforation size and cell compression on the water transport in the cathode diffusion media of the structure-modified cell using x-ray radiography. The constant current operation tests were also conducted to characterize the cell performance. It was shown that the 300 µm perforation and low compression have a large effect on encouraging the in-plane water drainage from the diffusion media to the groove or hole, resulting in reducing the voltage loss due to the water flooding. This innovative structural modification can be put to practical use because of its simple manufacturing process and low cost.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel Cells
Fuel Cells 工程技术-电化学
CiteScore
5.80
自引率
3.60%
发文量
31
审稿时长
3.7 months
期刊介绍: This journal is only available online from 2011 onwards. Fuel Cells — From Fundamentals to Systems publishes on all aspects of fuel cells, ranging from their molecular basis to their applications in systems such as power plants, road vehicles and power sources in portables. Fuel Cells is a platform for scientific exchange in a diverse interdisciplinary field. All related work in -chemistry- materials science- physics- chemical engineering- electrical engineering- mechanical engineering- is included. Fuel Cells—From Fundamentals to Systems has an International Editorial Board and Editorial Advisory Board, with each Editor being a renowned expert representing a key discipline in the field from either a distinguished academic institution or one of the globally leading companies. Fuel Cells—From Fundamentals to Systems is designed to meet the needs of scientists and engineers who are actively working in the field. Until now, information on materials, stack technology and system approaches has been dispersed over a number of traditional scientific journals dedicated to classical disciplines such as electrochemistry, materials science or power technology. Fuel Cells—From Fundamentals to Systems concentrates on the publication of peer-reviewed original research papers and reviews.
期刊最新文献
Effects of Perforation Size and Compression on Water Removal From Structure-Modified Diffusion Media in PEFC Three-Dimensional Thermal Distribution Analysis in Direct Internal Reforming Cell-Stacking Solid Oxide Fuel Cells Fueled by Methane/Carbon Dioxide Mixture Gas Advancing Fuel Cell and Hydrogen Innovation for a Low-Carbon Future Cover Fuel Cells 1/2025 Effects of Initial Water Content of Membrane on Cold Start Performance of PEMFC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1