首页 > 最新文献

Fuel Cells最新文献

英文 中文
Effects of Perforation Size and Compression on Water Removal From Structure-Modified Diffusion Media in PEFC
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2025-03-01 DOI: 10.1002/fuce.70001
Kosuke Nishida, Tatsuki Furukawa, Reiya Kaneko

To alleviate water flooding in cathode electrodes of polymer electrolyte fuel cells (PEFCs), it is necessary to understand the water transport inside diffusion media and design the electrode/channel structure for facilitating the water discharge from porous electrodes to gas channels. The authors proposed the novel modified structure combining the electrode perforation with the channel hydrophilization in their previous study and revealed that its structure has the possibility of encouraging the through-plane water removal from the diffusion media and the oxygen diffusivity to the reaction sites. This study investigated the effects of perforation size and cell compression on the water transport in the cathode diffusion media of the structure-modified cell using x-ray radiography. The constant current operation tests were also conducted to characterize the cell performance. It was shown that the 300 µm perforation and low compression have a large effect on encouraging the in-plane water drainage from the diffusion media to the groove or hole, resulting in reducing the voltage loss due to the water flooding. This innovative structural modification can be put to practical use because of its simple manufacturing process and low cost.

{"title":"Effects of Perforation Size and Compression on Water Removal From Structure-Modified Diffusion Media in PEFC","authors":"Kosuke Nishida,&nbsp;Tatsuki Furukawa,&nbsp;Reiya Kaneko","doi":"10.1002/fuce.70001","DOIUrl":"https://doi.org/10.1002/fuce.70001","url":null,"abstract":"<div>\u0000 \u0000 <p>To alleviate water flooding in cathode electrodes of polymer electrolyte fuel cells (PEFCs), it is necessary to understand the water transport inside diffusion media and design the electrode/channel structure for facilitating the water discharge from porous electrodes to gas channels. The authors proposed the novel modified structure combining the electrode perforation with the channel hydrophilization in their previous study and revealed that its structure has the possibility of encouraging the through-plane water removal from the diffusion media and the oxygen diffusivity to the reaction sites. This study investigated the effects of perforation size and cell compression on the water transport in the cathode diffusion media of the structure-modified cell using x-ray radiography. The constant current operation tests were also conducted to characterize the cell performance. It was shown that the 300 µm perforation and low compression have a large effect on encouraging the in-plane water drainage from the diffusion media to the groove or hole, resulting in reducing the voltage loss due to the water flooding. This innovative structural modification can be put to practical use because of its simple manufacturing process and low cost.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143521927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three-Dimensional Thermal Distribution Analysis in Direct Internal Reforming Cell-Stacking Solid Oxide Fuel Cells Fueled by Methane/Carbon Dioxide Mixture Gas
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2025-03-01 DOI: 10.1002/fuce.70002
Katsuhiro Wakamatsu, Teppei Ogura

It is widely recognized that direct internal reforming (DIR) solid oxide fuel cells (SOFCs) fueled by biomass are one of the eco-friendly and high-power generation methods. In existing cell configurations, however, the performance and durability degradation of SOFCs are induced by a strong endothermic dry reforming of methane (DRM). They are required to understand the fundamental thermal distribution mechanism and construct new cell configurations to relax thermal distribution effects. We performed a three-dimensional thermal distribution analysis coupled with computational fluid dynamics and chemical reactions in DIR-SOFCs with the three-cell stacking reactor model as a more practical model. As a result of the simulation for temperature distribution in each case of homogeneous and functionally graded paper structure catalysts (PSCs), we have found that the largest temperature drop occurs near the inlet in the bottom layer compared with the upper and middle layers in both cases and temperature distribution is milder in the functionally graded PSC. We also have found the importance of two-dimensional reaction rate controls in gas flow and cell staking directions to uniform temperature distribution of each layer. Furthermore, we investigated the effects of exothermic electrochemical reaction in the anode on thermal distribution.

{"title":"Three-Dimensional Thermal Distribution Analysis in Direct Internal Reforming Cell-Stacking Solid Oxide Fuel Cells Fueled by Methane/Carbon Dioxide Mixture Gas","authors":"Katsuhiro Wakamatsu,&nbsp;Teppei Ogura","doi":"10.1002/fuce.70002","DOIUrl":"https://doi.org/10.1002/fuce.70002","url":null,"abstract":"<div>\u0000 \u0000 <p>It is widely recognized that direct internal reforming (DIR) solid oxide fuel cells (SOFCs) fueled by biomass are one of the eco-friendly and high-power generation methods. In existing cell configurations, however, the performance and durability degradation of SOFCs are induced by a strong endothermic dry reforming of methane (DRM). They are required to understand the fundamental thermal distribution mechanism and construct new cell configurations to relax thermal distribution effects. We performed a three-dimensional thermal distribution analysis coupled with computational fluid dynamics and chemical reactions in DIR-SOFCs with the three-cell stacking reactor model as a more practical model. As a result of the simulation for temperature distribution in each case of homogeneous and functionally graded paper structure catalysts (PSCs), we have found that the largest temperature drop occurs near the inlet in the bottom layer compared with the upper and middle layers in both cases and temperature distribution is milder in the functionally graded PSC. We also have found the importance of two-dimensional reaction rate controls in gas flow and cell staking directions to uniform temperature distribution of each layer. Furthermore, we investigated the effects of exothermic electrochemical reaction in the anode on thermal distribution.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143521928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancing Fuel Cell and Hydrogen Innovation for a Low-Carbon Future
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2025-02-27 DOI: 10.1002/fuce.70003
Swee Su Lim, Wai Yin Wong, Muhammed Ali SA, Mimi Hani Abu Bakar
{"title":"Advancing Fuel Cell and Hydrogen Innovation for a Low-Carbon Future","authors":"Swee Su Lim,&nbsp;Wai Yin Wong,&nbsp;Muhammed Ali SA,&nbsp;Mimi Hani Abu Bakar","doi":"10.1002/fuce.70003","DOIUrl":"https://doi.org/10.1002/fuce.70003","url":null,"abstract":"","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Fuel Cells 1/2025
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2025-02-26 DOI: 10.1002/fuce.70000

The ICFCHT-SFCHT 2023 is an international joint conference focused on the fusion of multiple fields and applications related to fuel cells and hydrogen technology, with an emphasis on materials and systems held in Malaysia on September 5th-6th, 2023. ICFCHT-SFCHT 2023 aimed to bring together scholars, researchers, scientists, practitioners, and students in the fuel cell and hydrogen technology field to discuss new developments, concepts, practices, and field experiences, as well as to identify future research needs and technological advances. The conference covered topics such as Fuel Cells for Mobile and Stationary Systems, Hydrogen Technology, Materials, Life-cycle Analysis & Circular Economy, and Miscellaneous (including green technology, renewable energy, nanotechnology, and other related fields). The manuscripts of this Topical Issue are related to this conference and were selected by the Guest Editors Dr. Swee Su Lim, Dr. Wai Yin Wong, Dr. Muhammed Ali Shaikh Abdul Kader Abdul Hameed and Dr. Mimi Hani Abu Bakar.

{"title":"Cover Fuel Cells 1/2025","authors":"","doi":"10.1002/fuce.70000","DOIUrl":"https://doi.org/10.1002/fuce.70000","url":null,"abstract":"<p>The ICFCHT-SFCHT 2023 is an international joint conference focused on the fusion of multiple fields and applications related to fuel cells and hydrogen technology, with an emphasis on materials and systems held in Malaysia on September 5th-6th, 2023. ICFCHT-SFCHT 2023 aimed to bring together scholars, researchers, scientists, practitioners, and students in the fuel cell and hydrogen technology field to discuss new developments, concepts, practices, and field experiences, as well as to identify future research needs and technological advances. The conference covered topics such as Fuel Cells for Mobile and Stationary Systems, Hydrogen Technology, Materials, Life-cycle Analysis &amp; Circular Economy, and Miscellaneous (including green technology, renewable energy, nanotechnology, and other related fields). The manuscripts of this Topical Issue are related to this conference and were selected by the Guest Editors Dr. Swee Su Lim, Dr. Wai Yin Wong, Dr. Muhammed Ali Shaikh Abdul Kader Abdul Hameed and Dr. Mimi Hani Abu Bakar.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.70000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143497388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of Initial Water Content of Membrane on Cold Start Performance of PEMFC
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2025-01-31 DOI: 10.1002/fuce.202400196
Yang Lan, Tao Chen, Fei Xiao, Zhongyu Gan, Ruixuan Zhang, Rufeng Zhang

The performance degradation of proton exchange membrane fuel cells (PEMFC) in low-temperature extreme environments is one of the challenges on the way to their commercialization, and it is important to investigate the performance changes of fuel cells in low-temperature environments for their future development. In this paper, the cold-start performance of fuel cells with different initial water content of the membrane and starting modes was compared. Lowering the initial water content of the membrane could enhance the water storage capacity of the cell and improve the cold-starting performance of the cell, but infinitely low initial water content might cause the reverse polarity phenomenon, which would cause serious corrosion and degradation of the membrane electrode assembly (MEA). In constant voltage starting mode, reducing the starting voltage could increase the heat production of the cell, but it would weaken the water storage capacity of the cell. In the constant current starting process, lowering the starting current could improve the water storage capacity of the cell, which was beneficial to the cold start of the cell. It was also found that the MEA with cold start failure had a serious performance degradation, and cold start failure needed to be avoided as much as possible.

{"title":"Effects of Initial Water Content of Membrane on Cold Start Performance of PEMFC","authors":"Yang Lan,&nbsp;Tao Chen,&nbsp;Fei Xiao,&nbsp;Zhongyu Gan,&nbsp;Ruixuan Zhang,&nbsp;Rufeng Zhang","doi":"10.1002/fuce.202400196","DOIUrl":"https://doi.org/10.1002/fuce.202400196","url":null,"abstract":"<div>\u0000 \u0000 <p>The performance degradation of proton exchange membrane fuel cells (PEMFC) in low-temperature extreme environments is one of the challenges on the way to their commercialization, and it is important to investigate the performance changes of fuel cells in low-temperature environments for their future development. In this paper, the cold-start performance of fuel cells with different initial water content of the membrane and starting modes was compared. Lowering the initial water content of the membrane could enhance the water storage capacity of the cell and improve the cold-starting performance of the cell, but infinitely low initial water content might cause the reverse polarity phenomenon, which would cause serious corrosion and degradation of the membrane electrode assembly (MEA). In constant voltage starting mode, reducing the starting voltage could increase the heat production of the cell, but it would weaken the water storage capacity of the cell. In the constant current starting process, lowering the starting current could improve the water storage capacity of the cell, which was beneficial to the cold start of the cell. It was also found that the MEA with cold start failure had a serious performance degradation, and cold start failure needed to be avoided as much as possible.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143121306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Integrated Heat Recovery System Design for a Fuel Cell Buggy With Hydrogen Preheating and Thermoelectric Generator
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2025-01-25 DOI: 10.1002/fuce.202400037
M. H. Hamdan, W. A. N. W. Mohamed, M. A. Aminudin, S. K. Kamarudin, I. A. Zakaria, B. Singh

This study presents an integrated heat recovery-proton exchange membrane (IHR-PEM) fuel cell system designed for lightweight vehicles powered by a 2 kW PEM fuel cell. The IHR system captures waste heat through multiple heat exchangers and integrates thermoelectric generator (TEG) modules for electrical regeneration and hydrogen preheating, enhancing PEM fuel cell performance. Utilizing the temperature gradient between the fuel cell's exhaust and the ambient environment, the system effectively converts waste heat into electrical energy, improving energy efficiency. Experimental evaluation under various operating parameters, including cruising speeds, PEM fuel cell loads, rejuvenation conditions, and electrical regeneration strategies, demonstrated the system's effectiveness. Results revealed waste heat absorption of up to 8.5 W and hydrogen preheating by 19°C, leading to an 11.5% increase in electrical power production and a maximum PEM fuel cell efficiency improvement of 11%. This study advances waste heat recovery (WHR) technologies in fuel cell-based transportation, significantly improving energy efficiency and reducing carbon emissions. The findings provide valuable insights into the integration of regenerative WHR systems for lightweight vehicles, fostering the development of sustainable and energy-efficient transportation solutions.

{"title":"An Integrated Heat Recovery System Design for a Fuel Cell Buggy With Hydrogen Preheating and Thermoelectric Generator","authors":"M. H. Hamdan,&nbsp;W. A. N. W. Mohamed,&nbsp;M. A. Aminudin,&nbsp;S. K. Kamarudin,&nbsp;I. A. Zakaria,&nbsp;B. Singh","doi":"10.1002/fuce.202400037","DOIUrl":"https://doi.org/10.1002/fuce.202400037","url":null,"abstract":"<div>\u0000 \u0000 <p>This study presents an integrated heat recovery-proton exchange membrane (IHR-PEM) fuel cell system designed for lightweight vehicles powered by a 2 kW PEM fuel cell. The IHR system captures waste heat through multiple heat exchangers and integrates thermoelectric generator (TEG) modules for electrical regeneration and hydrogen preheating, enhancing PEM fuel cell performance. Utilizing the temperature gradient between the fuel cell's exhaust and the ambient environment, the system effectively converts waste heat into electrical energy, improving energy efficiency. Experimental evaluation under various operating parameters, including cruising speeds, PEM fuel cell loads, rejuvenation conditions, and electrical regeneration strategies, demonstrated the system's effectiveness. Results revealed waste heat absorption of up to 8.5 W and hydrogen preheating by 19°C, leading to an 11.5% increase in electrical power production and a maximum PEM fuel cell efficiency improvement of 11%. This study advances waste heat recovery (WHR) technologies in fuel cell-based transportation, significantly improving energy efficiency and reducing carbon emissions. The findings provide valuable insights into the integration of regenerative WHR systems for lightweight vehicles, fostering the development of sustainable and energy-efficient transportation solutions.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 1","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Activity–Stability Relationship in Compositionally Tuned Magnetron Co-Sputtered Bimetallic Catalysts for Proton Exchange Membrane Fuel Cells
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2024-12-27 DOI: 10.1002/fuce.202400095
Martin Orság, Athira Lekshmi Mohandas Sandhya, Xianxian Xie, Jan Kučera, Miquel Gamon Rodriguez, Yurii Yakovlev, Milan Dopita, Iva Matolínová, Ivan Khalakhan

In the present study, magnetron-sputtered PtxM100−x (M = Co, Cu, and Y; x = 25, 50, 75, and 100) bimetallic alloys were investigated as PEMFC cathodes. Accurate composition and layer thickness control enabled a systematic study of the correlation between the alloy composition, its activity, and stability. The catalysts underwent thorough characterization, employing a diverse portfolio of characterization techniques such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and cyclic voltammetry. The activity of all investigated alloys was tested directly in a fuel cell device, whereas stability was assessed through potentiodynamic cycling in a half-cell. The activity–stability index, considering experimental results for both activity and stability, was calculated and compared for all investigated catalysts. All alloys exhibited a volcano-type trend in the activity–stability index as a function of the concentration of the alloying element with maxima observed for Pt50Co50, Pt50Cu50, and Pt75Y25 for respective alloys, surpassing that of monometallic platinum. Overall, Pt50Co50 emerged as a catalyst with the highest activity–stability ratio.

{"title":"Activity–Stability Relationship in Compositionally Tuned Magnetron Co-Sputtered Bimetallic Catalysts for Proton Exchange Membrane Fuel Cells","authors":"Martin Orság,&nbsp;Athira Lekshmi Mohandas Sandhya,&nbsp;Xianxian Xie,&nbsp;Jan Kučera,&nbsp;Miquel Gamon Rodriguez,&nbsp;Yurii Yakovlev,&nbsp;Milan Dopita,&nbsp;Iva Matolínová,&nbsp;Ivan Khalakhan","doi":"10.1002/fuce.202400095","DOIUrl":"https://doi.org/10.1002/fuce.202400095","url":null,"abstract":"<p>In the present study, magnetron-sputtered Pt<i><sub>x</sub></i>M<sub>100−</sub><i><sub>x</sub></i> (M = Co, Cu, and Y; <i>x</i> = 25, 50, 75, and 100) bimetallic alloys were investigated as PEMFC cathodes. Accurate composition and layer thickness control enabled a systematic study of the correlation between the alloy composition, its activity, and stability. The catalysts underwent thorough characterization, employing a diverse portfolio of characterization techniques such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and cyclic voltammetry. The activity of all investigated alloys was tested directly in a fuel cell device, whereas stability was assessed through potentiodynamic cycling in a half-cell. The activity–stability index, considering experimental results for both activity and stability, was calculated and compared for all investigated catalysts. All alloys exhibited a volcano-type trend in the activity–stability index as a function of the concentration of the alloying element with maxima observed for Pt<sub>50</sub>Co<sub>50</sub>, Pt<sub>50</sub>Cu<sub>50</sub>, and Pt<sub>75</sub>Y<sub>25</sub> for respective alloys, surpassing that of monometallic platinum. Overall, Pt<sub>50</sub>Co<sub>50</sub> emerged as a catalyst with the highest activity–stability ratio.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.202400095","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143119641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screen Printing Catalyst Inks With Enhanced Process Stability for PEM Fuel Cell Production
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2024-12-15 DOI: 10.1002/fuce.202400158
Linda Ney, Nikolas Seidl, Rajveer Singh, Patrick Schneider, Dominik Stross, Andreas Göppentin, Sebastian Tepner, Matthias Klingele, Roman Keding

Current state-of-the-art coating techniques for PEM fuel cell electrode manufacturing such as slot-die coating use closed ink reservoirs, allowing low boiling point solvents as the dispersion matrix for solid components of the catalyst ink. Applying such low boiling point inks to printing methods that expose catalyst inks to air, like flatbed screen printing, results in an instable and nonscalable production process due to the successive evaporation of these solvents. Within this study, a total of 12 different solvents are examined for process stability and electrochemical performance when applied with flatbed screen printing. Ink characteristics, such as contact angle, rheology, and sedimentation experiments, are quantified to reveal the most suitable set of solvents, enabling the use of open-reservoir printing methods like flatbed screen printing. Additionally, electrochemical in situ characterization of catalyst-coated membranes showed that 1,2-propanediol and 1-heptanol are solvents that combine process stability with high fuel cell performance.

{"title":"Screen Printing Catalyst Inks With Enhanced Process Stability for PEM Fuel Cell Production","authors":"Linda Ney,&nbsp;Nikolas Seidl,&nbsp;Rajveer Singh,&nbsp;Patrick Schneider,&nbsp;Dominik Stross,&nbsp;Andreas Göppentin,&nbsp;Sebastian Tepner,&nbsp;Matthias Klingele,&nbsp;Roman Keding","doi":"10.1002/fuce.202400158","DOIUrl":"https://doi.org/10.1002/fuce.202400158","url":null,"abstract":"<p>Current state-of-the-art coating techniques for PEM fuel cell electrode manufacturing such as slot-die coating use closed ink reservoirs, allowing low boiling point solvents as the dispersion matrix for solid components of the catalyst ink. Applying such low boiling point inks to printing methods that expose catalyst inks to air, like flatbed screen printing, results in an instable and nonscalable production process due to the successive evaporation of these solvents. Within this study, a total of 12 different solvents are examined for process stability and electrochemical performance when applied with flatbed screen printing. Ink characteristics, such as contact angle, rheology, and sedimentation experiments, are quantified to reveal the most suitable set of solvents, enabling the use of open-reservoir printing methods like flatbed screen printing. Additionally, electrochemical in situ characterization of catalyst-coated membranes showed that 1,2-propanediol and 1-heptanol are solvents that combine process stability with high fuel cell performance.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.202400158","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Study on the Effect of the Combined Radial Flow Field on the Performance of Proton Exchange Membrane Fuel Cells
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2024-12-15 DOI: 10.1002/fuce.202400067
Weidong Wu, Yuan Chen, Zongming Huang, Menghan Li, Xiaori Liu, Zhonghao Rao

As the flow field structure has a crucial influence on the performance of the proton exchange membrane fuel cell, in this research, the radial flow field R-0 is designed and optimized based on the characteristics of the annular serpentine and annular flow channels to form combined flow field structure (R-1 to R-5). Subsequently, a three-dimensional and two-phase model is established and the effects of each flow field on the cell performance are numerically investigated. Results indicate that the R-0 can enhance the gas vertical velocity on the diffusion-catalyst interface compared to the parallel flow field, which increases the effective concentration of reaction gases within the catalyst layer, thereby accelerating the electrochemical reaction rate, and the performance of the combined flow fields is further improved. In addition, the effect of the percentage of annular serpentine within the combined flow field on the concentration distribution, uniformity, and output performance is analyzed. Results indicate that increasing the percentage of annular serpentine structure can increase the pressure between adjacent channels, and thus the higher pressure and concentration gradient generated can enhance the gas transport and reduce the water accumulation under the ribs thus effectively improving the cell performance.

{"title":"Numerical Study on the Effect of the Combined Radial Flow Field on the Performance of Proton Exchange Membrane Fuel Cells","authors":"Weidong Wu,&nbsp;Yuan Chen,&nbsp;Zongming Huang,&nbsp;Menghan Li,&nbsp;Xiaori Liu,&nbsp;Zhonghao Rao","doi":"10.1002/fuce.202400067","DOIUrl":"https://doi.org/10.1002/fuce.202400067","url":null,"abstract":"<div>\u0000 \u0000 <p>As the flow field structure has a crucial influence on the performance of the proton exchange membrane fuel cell, in this research, the radial flow field R-0 is designed and optimized based on the characteristics of the annular serpentine and annular flow channels to form combined flow field structure (R-1 to R-5). Subsequently, a three-dimensional and two-phase model is established and the effects of each flow field on the cell performance are numerically investigated. Results indicate that the R-0 can enhance the gas vertical velocity on the diffusion-catalyst interface compared to the parallel flow field, which increases the effective concentration of reaction gases within the catalyst layer, thereby accelerating the electrochemical reaction rate, and the performance of the combined flow fields is further improved. In addition, the effect of the percentage of annular serpentine within the combined flow field on the concentration distribution, uniformity, and output performance is analyzed. Results indicate that increasing the percentage of annular serpentine structure can increase the pressure between adjacent channels, and thus the higher pressure and concentration gradient generated can enhance the gas transport and reduce the water accumulation under the ribs thus effectively improving the cell performance.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanofiber/Nanoparticle Electrodes for Ultra-low Platinum Fuel Cells via Simultaneous Foam Electrospinning and Electrospraying
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2024-11-21 DOI: 10.1002/fuce.202400069
Dohyun Kim, Rui Sun, Yossef A. Elabd

In this study, we developed a new technique, simultaneous foam electrospinning and electrospraying (FE/E), that produces nanofiber/nanoparticle electrodes at higher production rates compared to needle-based electrospinning and electrospraying (E/E). Herein, the nanofiber amount was precisely controlled by applying various voltages on the foam electrospinning process at a fixed platinum (Pt) loading, which enables an exclusive investigation into the impact of ionomer nanofiber on fuel cell performance at ultra-low Pt loadings for proton exchange membrane fuel cells. The results show that fuel cell performance is strongly dependent on ionomer nanofiber content. At 0.04 mg/cm2 nanofiber amount, the electrodes exhibited the highest fuel cell power density of 1.09 W/cm2 and Pt utilization of 11.5 kW/gPt, which are 28% and 39% higher than those of the electrode produced via electrospraying alone, respectively. The improvement results from enhanced proton and gas transport stemming from the nanofiber network as verified by cyclic voltammetry, electrochemical impedance spectroscopy, and oxygen gain voltage analysis. The FE/E technique provides a pathway to produce ultra-low Pt nanofiber/nanoparticle electrodes at high production rates and high fuel cell performance.

{"title":"Nanofiber/Nanoparticle Electrodes for Ultra-low Platinum Fuel Cells via Simultaneous Foam Electrospinning and Electrospraying","authors":"Dohyun Kim,&nbsp;Rui Sun,&nbsp;Yossef A. Elabd","doi":"10.1002/fuce.202400069","DOIUrl":"https://doi.org/10.1002/fuce.202400069","url":null,"abstract":"<div>\u0000 \u0000 <p>In this study, we developed a new technique, simultaneous foam electrospinning and electrospraying (FE/E), that produces nanofiber/nanoparticle electrodes at higher production rates compared to needle-based electrospinning and electrospraying (E/E). Herein, the nanofiber amount was precisely controlled by applying various voltages on the foam electrospinning process at a fixed platinum (Pt) loading, which enables an exclusive investigation into the impact of ionomer nanofiber on fuel cell performance at ultra-low Pt loadings for proton exchange membrane fuel cells. The results show that fuel cell performance is strongly dependent on ionomer nanofiber content. At 0.04 mg/cm<sup>2</sup> nanofiber amount, the electrodes exhibited the highest fuel cell power density of 1.09 W/cm<sup>2</sup> and Pt utilization of 11.5 kW/g<sub>Pt</sub>, which are 28% and 39% higher than those of the electrode produced via electrospraying alone, respectively. The improvement results from enhanced proton and gas transport stemming from the nanofiber network as verified by cyclic voltammetry, electrochemical impedance spectroscopy, and oxygen gain voltage analysis. The FE/E technique provides a pathway to produce ultra-low Pt nanofiber/nanoparticle electrodes at high production rates and high fuel cell performance.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"25 2","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143118070","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fuel Cells
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1