首页 > 最新文献

Fuel Cells最新文献

英文 中文
Research and Integration of Hydrogen Technologies to Access Economic Sustainability (EFCF2023) 研究和整合氢能技术以实现经济可持续性(EFCF2023)
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2024-10-29 DOI: 10.1002/fuce.2024701013
Michael H. Eikerling, Olivier Bucheli, Yannis Ieropoulos, Ludovic Jourdin, Petra Bele
<p>The 27th edition of the European Fuel Cell Forum with a focus on Low Temperature Electrolyzers, Fuel Cells, and H<sub>2</sub> Processing saw the return to the normal in-person conference modus. With the hitherto highest number of participants of the low-temperature conference branch, an excellent line-up of oral and poster presentations, and an overall positive vibe in conversations, the conference asserted the standing of the EFCF as the prime forum for scientific-technical exchanges on electrochemical hydrogen technologies in Europe.</p><p>The drive towards hydrogen as the currency of a sustainable global economy is as dynamic as ever. Yet, enabling the epochal energy transition through market-ready water electrolysis and fuel cell technologies remains an ambitious undertaking, especially when facing the immediacy of rapidly transforming climate and ecological systems. It needs unprecedented alignment of efforts from scientists, technology developers, and system integrators, driven by a high awareness of socioeconomic and environmental needs and relying on unwavering government support.</p><p>‘Integration’, the motto of the EFCF2023 conference, refers to the realization that any challenge related to the performance or stability of fuel cell or electrolyzer technologies, even if it originates deep at the materials level, will not be solved in isolation. It necessitates integration from an early stage, to be achieved scale-to-scale, component-to-component, and lab-to-lab, and combining modeling and characterization in meaningful ways. Challenged by the socioeconomic and political landscape and aligning with this motto, EFCF2023 kept its focus on fundamental understanding of electrocatalyst materials and reaction kinetics, as well as progresses and current issues for fuel cell and electrolyzer systems and their integration across the different physical levels. Furthermore, contributions related to advanced modelling and diagnostics, as well as engineering, system integration, and demonstration of real-world devices.</p><p>In total 172 papers were presented at EFCF2023, of which 108 have been presented orally. Several poster presentations also prepared as an MP4 record presentation accessible to conference participants through EFCF's website also after the conference, similar to the recorded oral presentations. Finally, a limited number of scientific papers have been selected to become part of this Special Issue.</p><p>Alongside EFCF2023, the 5th International Microbial/Enzymatic Electrochemistry Platform Symposium (MEEP2023) was held. This event sparked lively discussions on the use of microbial cells and enzymes as ‘catalysts’ in various electrochemical systems, ranging from electricity generation in microbial fuel cells to the conversion of carbon dioxide into chemicals and fuels in microbial electrosynthesis systems. To bring these technologies to industrial scale, it is essential to explore both fundamental and applied engineering aspects—a
以低温电解槽、燃料电池和 H2 处理为主题的第 27 届欧洲燃料电池论坛恢复了正常的现场会议模式。低温会议分会的参会人数是迄今为止最多的,口头报告和海报展示阵容强大,整体对话气氛积极,这些都证明了欧洲燃料电池论坛作为欧洲电化学制氢技术的主要科技交流论坛的地位。然而,通过适销对路的水电解和燃料电池技术实现划时代的能源转型仍然是一项雄心勃勃的事业,尤其是在面临气候和生态系统急剧变化的当下。EFCF2023会议的口号是 "整合",指的是认识到任何与燃料电池或电解槽技术的性能或稳定性有关的挑战,即使是深层次的材料问题,也不可能孤立地得到解决。它需要从早期阶段就进行整合,实现规模与规模之间、组件与组件之间、实验室与实验室之间的整合,并以有意义的方式将建模和表征结合起来。在社会经济和政治环境的挑战下,EFCF2023 秉承这一宗旨,始终关注对电催化剂材料和反应动力学的基本理解,以及燃料电池和电解槽系统的进展和当前问题及其在不同物理层面上的整合。此外,与先进建模和诊断以及工程设计、系统集成和实际设备演示相关的论文也在 EFCF2023 上发表。一些海报演讲还制作了 MP4 记录演示文稿,与会者可在会后通过 EFCF 网站访问,与口头演讲录音类似。最后,还挑选了少量科学论文作为本特刊的一部分。与 EFCF2023 同时举行的还有第五届国际微生物/酶电化学平台研讨会(MEEP2023)。此次活动就微生物细胞和酶作为 "催化剂 "在各种电化学系统中的应用展开了热烈讨论,讨论范围从微生物燃料电池发电到微生物电合成系统将二氧化碳转化为化学品和燃料。要使这些技术达到工业化规模,必须从基础和应用工程两方面进行探索,这也是 MEEP2023 计划的重点。研讨会涵盖的主题包括微生物生物膜功能、电子传递机制、新型材料和生物混合物、多尺度质量传输以及扩大规模所面临的挑战。衷心感谢《燃料电池--从基础到应用系统》杂志主编 Eileen Yu 教授和高级编辑 Petra Bele 博士的大力支持,使这一合并特刊得以在这一备受推崇的杂志上发表。
{"title":"Research and Integration of Hydrogen Technologies to Access Economic Sustainability (EFCF2023)","authors":"Michael H. Eikerling,&nbsp;Olivier Bucheli,&nbsp;Yannis Ieropoulos,&nbsp;Ludovic Jourdin,&nbsp;Petra Bele","doi":"10.1002/fuce.2024701013","DOIUrl":"https://doi.org/10.1002/fuce.2024701013","url":null,"abstract":"&lt;p&gt;The 27th edition of the European Fuel Cell Forum with a focus on Low Temperature Electrolyzers, Fuel Cells, and H&lt;sub&gt;2&lt;/sub&gt; Processing saw the return to the normal in-person conference modus. With the hitherto highest number of participants of the low-temperature conference branch, an excellent line-up of oral and poster presentations, and an overall positive vibe in conversations, the conference asserted the standing of the EFCF as the prime forum for scientific-technical exchanges on electrochemical hydrogen technologies in Europe.&lt;/p&gt;&lt;p&gt;The drive towards hydrogen as the currency of a sustainable global economy is as dynamic as ever. Yet, enabling the epochal energy transition through market-ready water electrolysis and fuel cell technologies remains an ambitious undertaking, especially when facing the immediacy of rapidly transforming climate and ecological systems. It needs unprecedented alignment of efforts from scientists, technology developers, and system integrators, driven by a high awareness of socioeconomic and environmental needs and relying on unwavering government support.&lt;/p&gt;&lt;p&gt;‘Integration’, the motto of the EFCF2023 conference, refers to the realization that any challenge related to the performance or stability of fuel cell or electrolyzer technologies, even if it originates deep at the materials level, will not be solved in isolation. It necessitates integration from an early stage, to be achieved scale-to-scale, component-to-component, and lab-to-lab, and combining modeling and characterization in meaningful ways. Challenged by the socioeconomic and political landscape and aligning with this motto, EFCF2023 kept its focus on fundamental understanding of electrocatalyst materials and reaction kinetics, as well as progresses and current issues for fuel cell and electrolyzer systems and their integration across the different physical levels. Furthermore, contributions related to advanced modelling and diagnostics, as well as engineering, system integration, and demonstration of real-world devices.&lt;/p&gt;&lt;p&gt;In total 172 papers were presented at EFCF2023, of which 108 have been presented orally. Several poster presentations also prepared as an MP4 record presentation accessible to conference participants through EFCF's website also after the conference, similar to the recorded oral presentations. Finally, a limited number of scientific papers have been selected to become part of this Special Issue.&lt;/p&gt;&lt;p&gt;Alongside EFCF2023, the 5th International Microbial/Enzymatic Electrochemistry Platform Symposium (MEEP2023) was held. This event sparked lively discussions on the use of microbial cells and enzymes as ‘catalysts’ in various electrochemical systems, ranging from electricity generation in microbial fuel cells to the conversion of carbon dioxide into chemicals and fuels in microbial electrosynthesis systems. To bring these technologies to industrial scale, it is essential to explore both fundamental and applied engineering aspects—a","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"24 5","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.2024701013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Fuel Cells 5/2024 覆盖燃料电池 5/2024
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2024-10-29 DOI: 10.1002/fuce.2024701014

The EFCF conferences in series continued with 27th edition of the European Fuel Cell Forum with a focus on Low Temperature Electrolyzers, Fuel Cells & H2 Processing, and for the first time alongside with the 5th International Microbial/Enzymatic Electrochemistry Platform Symposium (MEEP2023), taking place between 4 – 7 of July 2023 in Lucerene, Switzerland.

The 27th edition of the European Fuel Cell Forum with the motto ‘Integration’ provided a global overview of the current ECFC technology developments within a well-balanced program, covering technology development and scientific achievements, from fundamental research to the latest achievements in terms of demonstrations.

Also, for the first time the 5th International Microbial/Enzymatic Electrochemistry Platform Symposium (MEEP2023) was held together with the EFCF forum. The MEEP2023 symposium covered topics such as microbial biofilm functions, electron transfer mechanisms, novel materials and bio-hybrids, multiscale mass transport, and scale-up challenges.

第 27 届欧洲燃料电池论坛以低温电解槽、燃料电池及amp; H2 处理为主题,并首次与第 5 届国际微生物/酶电化学平台研讨会(MEEP2023)同期举行。第 27 届欧洲燃料电池论坛的口号是 "一体化",在一个均衡的项目中对当前的 ECFC 技术发展进行了全球概述,涵盖了从基础研究到最新示范成果的技术发展和科学成就。此外,第五届国际微生物/酶电化学平台研讨会(MEEP2023)也首次与 EFCF 论坛同期举行。MEEP2023 研讨会涉及的主题包括微生物生物膜功能、电子传递机制、新型材料和生物混合物、多尺度质量传输以及规模化挑战等。
{"title":"Cover Fuel Cells 5/2024","authors":"","doi":"10.1002/fuce.2024701014","DOIUrl":"https://doi.org/10.1002/fuce.2024701014","url":null,"abstract":"<p>The EFCF conferences in series continued with 27th edition of the European Fuel Cell Forum with a focus on Low Temperature Electrolyzers, Fuel Cells &amp; H<sub>2</sub> Processing, and for the first time alongside with the 5th International Microbial/Enzymatic Electrochemistry Platform Symposium (MEEP2023), taking place between 4 – 7 of July 2023 in Lucerene, Switzerland.</p><p>The 27th edition of the European Fuel Cell Forum with the motto ‘Integration’ provided a global overview of the current ECFC technology developments within a well-balanced program, covering technology development and scientific achievements, from fundamental research to the latest achievements in terms of demonstrations.</p><p>Also, for the first time the 5th International Microbial/Enzymatic Electrochemistry Platform Symposium (MEEP2023) was held together with the EFCF forum. The MEEP2023 symposium covered topics such as microbial biofilm functions, electron transfer mechanisms, novel materials and bio-hybrids, multiscale mass transport, and scale-up challenges.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"24 5","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.2024701014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540827","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling of Catalyst Degradation in Polymer Electrolyte Membrane Fuel Cells Applied to Three-Dimensional Computational Fluid Dynamics Simulation 聚合物电解质膜燃料电池催化剂降解建模应用于三维计算流体动力学模拟
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2024-10-14 DOI: 10.1002/fuce.202300237
Clemens Fink, Joel Mata Edjokola, Marijo Telenta, Merit Bodner

In a polymer electrolyte membrane (PEM) fuel cell, the following degradation mechanisms are associated with the catalyst particles and their support: carbon support corrosion triggered by carbon and platinum oxidation, platinum dissolution with redeposition, and particle detachment with agglomeration. In this work, an electrochemical model for those degradation effects is presented as well as its coupling with a three-dimensional computational fluid dynamics PEM fuel cell performance model. The overall model is used to calculate polarization curves and current density distributions of a PEM fuel cell in a fresh and aged state as well as the degradation process during an accelerated stress test with 30 000 voltage cycles. The obtained simulation results are compared to measurements on a three-serpentine channel PEM fuel cell with an active area of 25 cm2 under various temperatures and humidities. The experimental data are obtained with a segmented test cell using respective degradation protocols and test conditions proposed by the United States Department of Energy. In addition to the temperature and humidity changes, the influence of geometry and material parameters on the degree of degradation and the resulting fuel cell performance is explored in detail.

在聚合物电解质膜(PEM)燃料电池中,以下降解机制与催化剂颗粒及其支撑物有关:碳和铂氧化引发的碳支撑物腐蚀、铂溶解并重新沉积以及颗粒脱落并聚集。在这项工作中,介绍了一个针对这些降解效应的电化学模型,以及该模型与三维计算流体动力学 PEM 燃料电池性能模型的耦合。整个模型用于计算 PEM 燃料电池在新鲜和老化状态下的极化曲线和电流密度分布,以及在 30 000 次电压循环的加速应力测试中的降解过程。模拟结果与在不同温度和湿度条件下对活性面积为 25 平方厘米的三蛇形通道 PEM 燃料电池的测量结果进行了比较。实验数据是采用美国能源部提出的相应降解协议和测试条件,通过分段测试电池获得的。除温度和湿度变化外,还详细探讨了几何形状和材料参数对降解程度以及由此产生的燃料电池性能的影响。
{"title":"Modeling of Catalyst Degradation in Polymer Electrolyte Membrane Fuel Cells Applied to Three-Dimensional Computational Fluid Dynamics Simulation","authors":"Clemens Fink,&nbsp;Joel Mata Edjokola,&nbsp;Marijo Telenta,&nbsp;Merit Bodner","doi":"10.1002/fuce.202300237","DOIUrl":"https://doi.org/10.1002/fuce.202300237","url":null,"abstract":"<div>\u0000 \u0000 <p>In a polymer electrolyte membrane (PEM) fuel cell, the following degradation mechanisms are associated with the catalyst particles and their support: carbon support corrosion triggered by carbon and platinum oxidation, platinum dissolution with redeposition, and particle detachment with agglomeration. In this work, an electrochemical model for those degradation effects is presented as well as its coupling with a three-dimensional computational fluid dynamics PEM fuel cell performance model. The overall model is used to calculate polarization curves and current density distributions of a PEM fuel cell in a fresh and aged state as well as the degradation process during an accelerated stress test with 30 000 voltage cycles. The obtained simulation results are compared to measurements on a three-serpentine channel PEM fuel cell with an active area of 25 cm<sup>2</sup> under various temperatures and humidities. The experimental data are obtained with a segmented test cell using respective degradation protocols and test conditions proposed by the United States Department of Energy. In addition to the temperature and humidity changes, the influence of geometry and material parameters on the degree of degradation and the resulting fuel cell performance is explored in detail.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"24 5","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142540907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electrowetland Pilot of 50 m2: Operation and Characterization Under Real Conditions for 1 Year 50 平方米的电湿地试点:在真实条件下运行和表征 1 年
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2024-09-07 DOI: 10.1002/fuce.202300231
Pau Bosch-Jimenez, Clara Corbella, Ainhoa Gaudes, Sonia Sanchis, Pau Lopez, Daniele Molognoni, Alicia Villazán Cabero, Jose María de Cuenca, Eduard Borràs

Traditional wastewater treatment plants (WWTPs) consume a significant amount of energy to clean wastewater. However, for medium- and small-scale WWTPs, it is crucial to have an energetically self-sustained treatment. In this regard, novel low-energy demand treatment systems, such as nature-based solutions (NBS), are highly suitable alternatives. Constructed wetlands coupled with microbial fuel cells (MFC), referred to as electrowetlands (EWs), are NBS able to treat wastewater while recovering electricity. In this study, initially, various granular carbon materials were tested as anode materials in laboratory-scale MFCs, and anthracite was selected due to its higher electrochemical activity. Then, pre-pilot scale tests were conducted, evaluating different EW configurations. The one consisting in a horizontal anode yielded the best wastewater treatment efficiencies (chemical oxygen demand [COD] degradation greater than 90%) and electricity production (11 mW m−2; 260 mWh day−1 m−2). Finally, a 50 m2 pilot was constructed in Valladolid, studying its performance under real conditions for 1 year. The pilot showed robust and stable performance, achieving high wastewater treatment efficiencies (COD degradation >85%, outflow COD of 100 ppm) and generating 115 Wh in 1 year (power density of 0.4 mW m−2).

传统的污水处理厂(WWTPs)需要消耗大量能源来净化污水。然而,对于中小型污水处理厂来说,实现能源自给自足的处理至关重要。在这方面,新型低能耗处理系统,如基于自然的解决方案(NBS),是非常合适的替代方案。与微生物燃料电池 (MFC) 相结合的人工湿地被称为电湿地 (EW),是一种能够在处理废水的同时回收电力的 NBS。在这项研究中,首先测试了各种颗粒碳材料作为实验室规模 MFC 的阳极材料,由于无烟煤具有较高的电化学活性,因此被选中。然后,进行了先导规模试验,评估了不同的 EW 配置。其中,水平阳极的废水处理效率(化学需氧量 [COD] 降解率大于 90%)和发电量(11 mW m-2;260 mWh day-1 m-2)最高。最后,在巴利亚多利德建造了一个 50 平方米的试点,在实际条件下对其性能进行了为期一年的研究。试点项目表现出强劲而稳定的性能,实现了较高的废水处理效率(化学需氧量降解 85%,流出的化学需氧量为 100 ppm),并在 1 年内产生了 115 Wh 电量(功率密度为 0.4 mW m-2)。
{"title":"Electrowetland Pilot of 50 m2: Operation and Characterization Under Real Conditions for 1 Year","authors":"Pau Bosch-Jimenez,&nbsp;Clara Corbella,&nbsp;Ainhoa Gaudes,&nbsp;Sonia Sanchis,&nbsp;Pau Lopez,&nbsp;Daniele Molognoni,&nbsp;Alicia Villazán Cabero,&nbsp;Jose María de Cuenca,&nbsp;Eduard Borràs","doi":"10.1002/fuce.202300231","DOIUrl":"10.1002/fuce.202300231","url":null,"abstract":"<div>\u0000 \u0000 <p>Traditional wastewater treatment plants (WWTPs) consume a significant amount of energy to clean wastewater. However, for medium- and small-scale WWTPs, it is crucial to have an energetically self-sustained treatment. In this regard, novel low-energy demand treatment systems, such as nature-based solutions (NBS), are highly suitable alternatives. Constructed wetlands coupled with microbial fuel cells (MFC), referred to as electrowetlands (EWs), are NBS able to treat wastewater while recovering electricity. In this study, initially, various granular carbon materials were tested as anode materials in laboratory-scale MFCs, and anthracite was selected due to its higher electrochemical activity. Then, pre-pilot scale tests were conducted, evaluating different EW configurations. The one consisting in a horizontal anode yielded the best wastewater treatment efficiencies (chemical oxygen demand [COD] degradation greater than 90%) and electricity production (11 mW m<sup>−2</sup>; 260 mWh day<sup>−1</sup> m<sup>−2</sup>). Finally, a 50 m<sup>2</sup> pilot was constructed in Valladolid, studying its performance under real conditions for 1 year. The pilot showed robust and stable performance, achieving high wastewater treatment efficiencies (COD degradation &gt;85%, outflow COD of 100 ppm) and generating 115 Wh in 1 year (power density of 0.4 mW m<sup>−2</sup>).</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"24 5","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aging Effects Observed in Automotive Fuel Cell Stacks by Applying a New Realistic Test Protocol and Humidity Control 通过应用新的真实测试协议和湿度控制观测汽车燃料电池堆的老化效应
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2024-08-29 DOI: 10.1002/fuce.202300227
M. A. Schmid, J. Kaczerowski, F. Wilhelm, J. Scholta, B. Müller, M. Hölzle

Traditional automotive proton exchange membrane fuel cell (PEMFC) endurance testing relies on the fuel cell (FC) dynamic load cycle (FC-DLC) protocol, which inadequately reflects real-world driving conditions. To address this limitation the “Investigations on degradation mechanisms and Definition of protocols for PEM Fuel cells Accelerated Stress Testing” (ID-FAST) consortium defined the new representative “ID-FAST driving load cycle,” a novel approach capturing the load distribution, transitions, temperature variations, and humidity fluctuations experienced by FCs in real-world operation. We demonstrate the ID-FAST driving cycle itself and the integration into a realistic durability test program for FC test benches and present the resulting test data. Furthermore, we showcase its implementation within an accelerated stress testing (AST) protocol, highlighting its potential to significantly reduce testing time by accelerating degradation. Additionally, a novel method for highly dynamic humidity adjustment within test benches is introduced. By overcoming limitations of existing methods and incorporating the ID-FAST driving cycle, this work paves the way for a new era of efficient and realistic FC endurance testing, ultimately contributing to the development of more robust and durable automotive FC stacks.

传统的汽车质子交换膜燃料电池(PEMFC)耐久性测试依赖于燃料电池(FC)动态负载循环(FC-DLC)协议,该协议不能充分反映真实世界的驾驶条件。为解决这一局限性,"PEM 燃料电池加速应力测试降解机制研究与协议定义"(ID-FAST)联盟定义了新的代表性 "ID-FAST 驾驶负载循环",这是一种捕捉燃料电池在实际运行中经历的负载分布、转换、温度变化和湿度波动的新方法。我们展示了 ID-FAST 驱动循环本身以及将其集成到 FC 测试台的实际耐久性测试程序中的情况,并介绍了由此产生的测试数据。此外,我们还展示了 ID-FAST 在加速应力测试 (AST) 协议中的应用,突出了其通过加速降解显著缩短测试时间的潜力。此外,我们还介绍了一种在测试台内进行高动态湿度调整的新方法。通过克服现有方法的局限性并结合 ID-FAST 驱动循环,这项工作为开创高效、真实的 FC 耐久性测试新时代铺平了道路,最终有助于开发更坚固耐用的汽车 FC 堆栈。
{"title":"Aging Effects Observed in Automotive Fuel Cell Stacks by Applying a New Realistic Test Protocol and Humidity Control","authors":"M. A. Schmid,&nbsp;J. Kaczerowski,&nbsp;F. Wilhelm,&nbsp;J. Scholta,&nbsp;B. Müller,&nbsp;M. Hölzle","doi":"10.1002/fuce.202300227","DOIUrl":"10.1002/fuce.202300227","url":null,"abstract":"<div>\u0000 \u0000 <p>Traditional automotive proton exchange membrane fuel cell (PEMFC) endurance testing relies on the fuel cell (FC) dynamic load cycle (FC-DLC) protocol, which inadequately reflects real-world driving conditions. To address this limitation the “Investigations on degradation mechanisms and Definition of protocols for PEM Fuel cells Accelerated Stress Testing” (ID-FAST) consortium defined the new representative “ID-FAST driving load cycle,” a novel approach capturing the load distribution, transitions, temperature variations, and humidity fluctuations experienced by FCs in real-world operation. We demonstrate the ID-FAST driving cycle itself and the integration into a realistic durability test program for FC test benches and present the resulting test data. Furthermore, we showcase its implementation within an accelerated stress testing (AST) protocol, highlighting its potential to significantly reduce testing time by accelerating degradation. Additionally, a novel method for highly dynamic humidity adjustment within test benches is introduced. By overcoming limitations of existing methods and incorporating the ID-FAST driving cycle, this work paves the way for a new era of efficient and realistic FC endurance testing, ultimately contributing to the development of more robust and durable automotive FC stacks.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"24 5","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-Temperature Polymer Electrolyte Fuel Cells Based on Protic Ionic Liquids 基于原生离子液体的高温聚合物电解质燃料电池
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2024-08-08 DOI: 10.1002/fuce.202300213
Christian Rodenbücher, Carsten Korte, Yingzhen Chen, Klaus Wippermann, Piotr M. Kowalski, Sangwon Kim, Jungtae Kim, Rolf Hempelmann, BeomJun Kim

A hydrogen-based energy system will be the backbone of a future energy grid using renewable energies. It is widely accepted that polymer electrolyte membrane fuel cells (PEMFCs) are promising converters of chemical energy stored as hydrogen into electrical energy. An increase of the operation temperature from below 80°C to above about 160°C is considered beneficial, as it would allow for much simpler water management and the use of waste heat. Here, we are investigating protic ionic liquids (PILs) immobilized in a polybenzimidazole polymer as electrolytes for high-temperature PEMFCs. Ionic liquids are promising for fuel cell applications as they provide high thermal and chemical stability and high proton conductivity. In contrast to aqueous electrolytes, ionic liquids form a dense layered structure at the electrode–electrolyte interface that depends on the potential and on the content of residual water in the electrolyte. We investigate how PILs interact with the host polymer of the membrane revealing that porous polymer structures can be formed by solution casting, which allows for an encapsulation of the ionic liquid within the pores. After doping the polymer with small amounts of phosphoric acid, the membranes showed reasonable conductivity and fuel cell performance.

以氢为基础的能源系统将成为未来使用可再生能源的能源网的支柱。人们普遍认为,聚合物电解质膜燃料电池(PEMFCs)是很有前途的将储存为氢的化学能转化为电能的转换器。将工作温度从 80°C 以下提高到 160°C 以上被认为是有益的,因为这样可以大大简化水管理和余热利用。在此,我们正在研究将固定在聚苯并咪唑聚合物中的原生离子液体(PIL)作为高温 PEMFC 的电解质。离子液体具有较高的热稳定性、化学稳定性和质子传导性,因此在燃料电池应用中大有可为。与水性电解质不同的是,离子液体会在电极-电解质界面形成致密的层状结构,这种结构取决于电势和电解质中残留水的含量。我们研究了 PIL 如何与膜的主聚合物相互作用,发现多孔聚合物结构可通过溶液浇铸形成,从而将离子液体封装在孔隙中。在聚合物中掺入少量磷酸后,膜显示出合理的导电性和燃料电池性能。
{"title":"High-Temperature Polymer Electrolyte Fuel Cells Based on Protic Ionic Liquids","authors":"Christian Rodenbücher,&nbsp;Carsten Korte,&nbsp;Yingzhen Chen,&nbsp;Klaus Wippermann,&nbsp;Piotr M. Kowalski,&nbsp;Sangwon Kim,&nbsp;Jungtae Kim,&nbsp;Rolf Hempelmann,&nbsp;BeomJun Kim","doi":"10.1002/fuce.202300213","DOIUrl":"10.1002/fuce.202300213","url":null,"abstract":"<p>A hydrogen-based energy system will be the backbone of a future energy grid using renewable energies. It is widely accepted that polymer electrolyte membrane fuel cells (PEMFCs) are promising converters of chemical energy stored as hydrogen into electrical energy. An increase of the operation temperature from below 80°C to above about 160°C is considered beneficial, as it would allow for much simpler water management and the use of waste heat. Here, we are investigating protic ionic liquids (PILs) immobilized in a polybenzimidazole polymer as electrolytes for high-temperature PEMFCs. Ionic liquids are promising for fuel cell applications as they provide high thermal and chemical stability and high proton conductivity. In contrast to aqueous electrolytes, ionic liquids form a dense layered structure at the electrode–electrolyte interface that depends on the potential and on the content of residual water in the electrolyte. We investigate how PILs interact with the host polymer of the membrane revealing that porous polymer structures can be formed by solution casting, which allows for an encapsulation of the ionic liquid within the pores. After doping the polymer with small amounts of phosphoric acid, the membranes showed reasonable conductivity and fuel cell performance.</p>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"24 5","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fuce.202300213","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the Influence of GDL Porosity Distribution Variation on PEMFC Performance Under Assembly Pressure 组装压力下 GDL 孔隙率分布变化对 PEMFC 性能的影响研究
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2024-08-08 DOI: 10.1002/fuce.202400102
Yifei Cao, Yanfeng Xing, Juyong Cao, Xiaobing Zhang, Linfa Peng

The porosity of the gas diffusion layer (GDL) significantly impacts the performance of proton exchange membrane fuel cells (PEMFCs). Assembly pressure in PEMFCs leads to GDL deformation and alterations in porosity distribution. This study integrated a three-dimensional (3D) GDL deformation model with a 3D two-phase PEMFC model, employing a four-term Fourier series model to optimize the fitting of the GDL porosity distribution curve. The approach quantitatively assessed the impact of GDL porosity distribution under assembly pressure on PEMFC performance. Results reveal an arched porosity distribution in GDL, peaking in the middle of low channels adjacent to ribs. High porosity enhances oxygen and heat conduction but excessive porosity may cause uneven current density distribution, hindering GDL drainage. Furthermore, the analysis compares performances at various GDL compression ratios and thicknesses, showing an initial rise then fall in current density with increasing pressure. This represents a trade-off between the adverse impact of GDL compression on mass transfer losses and the favorable impact of reduced ohmic losses. At the optimal pressure, the current density is 3% higher than neighboring values at the same potential, and within the optimal GDL thickness range, the current density error remains below 1%.

气体扩散层(GDL)的孔隙率对质子交换膜燃料电池(PEMFC)的性能有很大影响。PEMFC 中的组装压力会导致 GDL 变形和孔隙率分布的改变。本研究将三维 (3D) GDL 变形模型与三维两相 PEMFC 模型相结合,采用四项傅里叶级数模型来优化 GDL 孔隙率分布曲线的拟合。该方法定量评估了装配压力下 GDL 孔隙率分布对 PEMFC 性能的影响。结果显示,GDL 中的孔隙率分布呈弧形,在靠近肋条的低通道中间达到峰值。高孔隙率可增强氧气和热量的传导,但过高的孔隙率可能会导致电流密度分布不均,从而阻碍 GDL 的排水。此外,分析还比较了不同 GDL 压缩比和厚度下的性能,结果表明随着压力的增加,电流密度先上升后下降。这体现了 GDL 压缩对传质损耗的不利影响与欧姆损耗减少的有利影响之间的权衡。在最佳压力下,电流密度比相同电位下的邻近值高 3%,而在最佳 GDL 厚度范围内,电流密度误差保持在 1%以下。
{"title":"Study on the Influence of GDL Porosity Distribution Variation on PEMFC Performance Under Assembly Pressure","authors":"Yifei Cao,&nbsp;Yanfeng Xing,&nbsp;Juyong Cao,&nbsp;Xiaobing Zhang,&nbsp;Linfa Peng","doi":"10.1002/fuce.202400102","DOIUrl":"10.1002/fuce.202400102","url":null,"abstract":"<div>\u0000 \u0000 <p>The porosity of the gas diffusion layer (GDL) significantly impacts the performance of proton exchange membrane fuel cells (PEMFCs). Assembly pressure in PEMFCs leads to GDL deformation and alterations in porosity distribution. This study integrated a three-dimensional (3D) GDL deformation model with a 3D two-phase PEMFC model, employing a four-term Fourier series model to optimize the fitting of the GDL porosity distribution curve. The approach quantitatively assessed the impact of GDL porosity distribution under assembly pressure on PEMFC performance. Results reveal an arched porosity distribution in GDL, peaking in the middle of low channels adjacent to ribs. High porosity enhances oxygen and heat conduction but excessive porosity may cause uneven current density distribution, hindering GDL drainage. Furthermore, the analysis compares performances at various GDL compression ratios and thicknesses, showing an initial rise then fall in current density with increasing pressure. This represents a trade-off between the adverse impact of GDL compression on mass transfer losses and the favorable impact of reduced ohmic losses. At the optimal pressure, the current density is 3% higher than neighboring values at the same potential, and within the optimal GDL thickness range, the current density error remains below 1%.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"24 4","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141929180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photosynthesis Characterization of Mutant Algae and Enhanced Carbon Fixation of Algae–Bacteria Symbiosis Treating Municipal Wastewater 突变藻类的光合作用特征及藻类与细菌共生处理城市污水的固碳能力的提高
IF 2.8 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2024-08-02 DOI: 10.1002/fuce.202400088
Pengsha Zhao, Xinying Liu, Zheng Wang, Jie Min, Yan Dang, Yu Hong, Dezhi Sun
Algae–bacteria symbiosis (ABS) as a sustainable wastewater treatment process has drawn mounting attention. However, nontrivial CO2 emissions were still present in municipal wastewater treatment due to the inadequate carbon fixation efficiency of microalgae under low carbon level. The obtained UV‐induced mutant Chlorella vulgaris MIHL4 performed higher carbon fixation capability (14.5%) and biomass productivity (25.3%) with improved photosynthetic fluorescence parameters and enzyme activities compared to wild‐type C. vulgaris. Transcriptome analyses showed pathways related to the carbon fixation and carbon catabolism were significantly up‐regulated in MIHL4. Compared with ABS inoculated with wild‐type C. vulgaris, CO2 emissions were significantly reduced by 32.1%–38.3% in ABS inoculated with MIHL4, where the biomass growth, metabolic activity, and sludge granulation were enhanced. Chlorella responsible for carbon fixation was the dominant population (19.3%) in ABS inoculated with MIHL4, in which the abundance of functional microbes and genes associated with photosynthesis as well as nutrient removal increased.
藻菌共生(ABS)作为一种可持续的废水处理工艺已引起越来越多的关注。然而,在城市污水处理过程中,由于微藻在低碳水平下的碳固定效率不足,仍然存在不小的二氧化碳排放量。与野生型绿球藻相比,紫外线诱导的突变体绿球藻 MIHL4 具有更高的碳固定能力(14.5%)和生物量生产率(25.3%),光合荧光参数和酶活性也有所提高。转录组分析表明,与碳固定和碳分解相关的途径在 MIHL4 中显著上调。与接种了野生型小球藻的 ABS 相比,接种了 MIHL4 的 ABS 的二氧化碳排放量明显减少了 32.1%-38.3%,生物量增长、新陈代谢活性和污泥造粒能力均有所提高。在接种了 MIHL4 的 ABS 中,负责碳固定的小球藻是主要种群(19.3%),其中与光合作用和营养物质去除相关的功能微生物和基因的数量有所增加。
{"title":"Photosynthesis Characterization of Mutant Algae and Enhanced Carbon Fixation of Algae–Bacteria Symbiosis Treating Municipal Wastewater","authors":"Pengsha Zhao, Xinying Liu, Zheng Wang, Jie Min, Yan Dang, Yu Hong, Dezhi Sun","doi":"10.1002/fuce.202400088","DOIUrl":"https://doi.org/10.1002/fuce.202400088","url":null,"abstract":"Algae–bacteria symbiosis (ABS) as a sustainable wastewater treatment process has drawn mounting attention. However, nontrivial CO<jats:sub>2</jats:sub> emissions were still present in municipal wastewater treatment due to the inadequate carbon fixation efficiency of microalgae under low carbon level. The obtained UV‐induced mutant <jats:italic>Chlorella vulgaris</jats:italic> MIHL4 performed higher carbon fixation capability (14.5%) and biomass productivity (25.3%) with improved photosynthetic fluorescence parameters and enzyme activities compared to wild‐type <jats:italic>C. vulgaris</jats:italic>. Transcriptome analyses showed pathways related to the carbon fixation and carbon catabolism were significantly up‐regulated in MIHL4. Compared with ABS inoculated with wild‐type <jats:italic>C. vulgaris</jats:italic>, CO<jats:sub>2</jats:sub> emissions were significantly reduced by 32.1%–38.3% in ABS inoculated with MIHL4, where the biomass growth, metabolic activity, and sludge granulation were enhanced. <jats:italic>Chlorella</jats:italic> responsible for carbon fixation was the dominant population (19.3%) in ABS inoculated with MIHL4, in which the abundance of functional microbes and genes associated with photosynthesis as well as nutrient removal increased.","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"36 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141881071","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revolutionizing Energy: Tailored ZnOFe2O3/rGO for Glucose Oxidation in Fuel Cell Application 能源革命:用于燃料电池中葡萄糖氧化的定制 ZnOFe2O3/rGO
IF 2.8 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2024-07-27 DOI: 10.1002/fuce.202300267
Nur Afifah Mat Razali, Norilhamiah Yahya, Nurul Atiqah Izzati Md Ishak, Nabila A. Karim, Siti Kartom Kamarudin
Metal‐based catalysts such as platinum and gold are frequently employed as electrocatalysts. However, they faced significant limitations, including high cost and susceptibility to poisoning and degradation, hindering their extensive utilization. To overcome these challenges, metal oxide offers promising alternatives for its fast electron transfer rate, large surface area, and high electrocatalytic activity in electrochemical oxidation materials. In this work, ZnO doped with Fe2O3 was scattered on reduced graphene oxide (rGO) to form a ZnOFe2O3/rGO hybrid by a hydrothermal method for glucose oxidation. The synthesized ZnOFe2O3/rGO composite was thoroughly characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and X‐ray photoelectron spectra (XPS) analysis, and the electrochemical performance was evaluated using cyclic voltammetry. ZnO particles are highly uniform flowerlike particles interacting with uniform‐size spherical‐like particles of Fe2O3 in ZnO–Fe2O3 supported on the rGO. The result reveals that interaction between ZnO–Fe2O3 nanocomposites supported onto graphene sheets reduces agglomeration compared to parent nanoparticles. An increase in surface‐to‐volume ratio exhibits more surface‐active sites for electrooxidation and thus improved catalytic performance by a negatively shifted potential of −36.62 mV versus Ag/AgCl, representing appropriate electrocatalysts for use as the anode in glucose fuel cells. The maximum current density of 0.5201 mA cm−2 was achieved in the electrochemical glucose oxidation equipped with ZnOFe2O3/rGO, which was almost 20 and 3 times higher than ZnO and Fe2O3, respectively. The synergistic interaction of ZnO–Fe2O3 supported on rGO showed a vital role as an electrocatalytic mediator to facilitate the charge transfer for glucose oxidation.
铂和金等金属催化剂经常被用作电催化剂。然而,它们面临着巨大的局限性,包括成本高、易中毒和降解,阻碍了它们的广泛应用。为了克服这些挑战,金属氧化物因其电子转移速度快、比表面积大、电催化活性高等特点,在电化学氧化材料中提供了很有前景的替代品。本研究采用水热法将掺杂了 Fe2O3 的氧化锌分散在还原氧化石墨烯(rGO)上,形成 ZnOFe2O3/rGO 杂化物,用于葡萄糖氧化。利用场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)、傅立叶变换红外光谱(FTIR)、X 射线衍射(XRD)和 X 射线光电子能谱(XPS)分析对合成的 ZnOFe2O3/rGO 复合材料进行了全面表征,并利用循环伏安法对其电化学性能进行了评估。结果表明,在 rGO 上支撑的 ZnO-Fe2O3 中,ZnO 颗粒是高度均匀的花状颗粒,与大小均匀的球状 Fe2O3 颗粒相互作用。结果表明,与母体纳米粒子相比,支撑在石墨烯片上的 ZnO-Fe2O3 纳米复合材料之间的相互作用减少了团聚。表面体积比的增加显示出更多的表面活性电氧化位点,从而提高了催化性能,与 Ag/AgCl 相比,电位负移达 -36.62 mV,是适合用作葡萄糖燃料电池阳极的电催化剂。在使用 ZnOFe2O3/rGO 进行电化学葡萄糖氧化时,达到的最大电流密度为 0.5201 mA cm-2,分别是 ZnO 和 Fe2O3 的近 20 倍和 3 倍。支撑在 rGO 上的 ZnO-Fe2O3 的协同作用显示了其作为电催化介质在促进葡萄糖氧化电荷转移方面的重要作用。
{"title":"Revolutionizing Energy: Tailored ZnOFe2O3/rGO for Glucose Oxidation in Fuel Cell Application","authors":"Nur Afifah Mat Razali, Norilhamiah Yahya, Nurul Atiqah Izzati Md Ishak, Nabila A. Karim, Siti Kartom Kamarudin","doi":"10.1002/fuce.202300267","DOIUrl":"https://doi.org/10.1002/fuce.202300267","url":null,"abstract":"Metal‐based catalysts such as platinum and gold are frequently employed as electrocatalysts. However, they faced significant limitations, including high cost and susceptibility to poisoning and degradation, hindering their extensive utilization. To overcome these challenges, metal oxide offers promising alternatives for its fast electron transfer rate, large surface area, and high electrocatalytic activity in electrochemical oxidation materials. In this work, ZnO doped with Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> was scattered on reduced graphene oxide (rGO) to form a ZnOFe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/rGO hybrid by a hydrothermal method for glucose oxidation. The synthesized ZnOFe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/rGO composite was thoroughly characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X‐ray diffraction (XRD), and X‐ray photoelectron spectra (XPS) analysis, and the electrochemical performance was evaluated using cyclic voltammetry. ZnO particles are highly uniform flowerlike particles interacting with uniform‐size spherical‐like particles of Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> in ZnO–Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> supported on the rGO. The result reveals that interaction between ZnO–Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> nanocomposites supported onto graphene sheets reduces agglomeration compared to parent nanoparticles. An increase in surface‐to‐volume ratio exhibits more surface‐active sites for electrooxidation and thus improved catalytic performance by a negatively shifted potential of −36.62 mV versus Ag/AgCl, representing appropriate electrocatalysts for use as the anode in glucose fuel cells. The maximum current density of 0.5201 mA cm<jats:sup>−2</jats:sup> was achieved in the electrochemical glucose oxidation equipped with ZnOFe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/rGO, which was almost 20 and 3 times higher than ZnO and Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>, respectively. The synergistic interaction of ZnO–Fe<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> supported on rGO showed a vital role as an electrocatalytic mediator to facilitate the charge transfer for glucose oxidation.","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"68 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141773498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Ionomer/Carbon Ratio and Catalytic Layer Thickness on the Operation of PEM Single Cells 离子膜/碳比例和催化层厚度对 PEM 单电池运行的影响
IF 2.6 4区 工程技术 Q3 ELECTROCHEMISTRY Pub Date : 2024-07-26 DOI: 10.1002/fuce.202200194
Leandro González Rodríguez, Rocío Andújar Lapeña, Roberto Campana Prada, Gema Sevilla Toboso, Margarita Sánchez Molina

The electrochemical operation of membrane electrode assemblies (MEAs) with different Nafion/C composition (0%, 20%, 30%, 40%, and 50%) and the same ultralow platinum load (0.02 mgPt cm−2) has been investigated. The electrodes were manufactured by depositing the catalytic ink, prepared with catalyst HiSPEC9100, onto the gas diffusion layers by wet powder spraying. MEA with 30% Nafion/C reached the highest power density (675 mW cm−2) and the lowest mass of Pt per power (0.059 gPt kW−1) under H2/O2 2 bar gauge pressure, the last quotient being 1.7 time less than USDRIVE objective for 2025. The electrochemical functioning of current membrane-electrode setups is compared with an analogous series with thicker electrode catalytic layer prepared with a commercial catalyst with a lower percent of Pt/C. Scanning electron microscopy characterization analysis of catalytic layers prepared by wet spraying exhibited an ionomer homogeneous network.

研究了不同 Nafion/C成分(0%、20%、30%、40%和 50%)和相同超低铂负载(0.02 mgPt cm-2)的膜电极组件(MEA)的电化学操作。电极是通过湿粉末喷涂将催化剂 HiSPEC9100 制备的催化墨水沉积在气体扩散层上制成的。在 H2/O2 2 bar 表压下,含 30% Nafion/C 的 MEA 达到了最高的功率密度(675 mW cm-2)和最低的单位功率铂质量(0.059 gPt kW-1),最后一个商数比 2025 年 USDRIVE 目标低 1.7 倍。将当前膜电极装置的电化学功能与使用含 Pt/C 百分比较低的商用催化剂制备的较厚电极催化层的类似系列进行了比较。对湿喷法制备的催化层进行的扫描电子显微镜特性分析表明,该催化层具有离子聚合物均质网络。
{"title":"Effect of Ionomer/Carbon Ratio and Catalytic Layer Thickness on the Operation of PEM Single Cells","authors":"Leandro González Rodríguez,&nbsp;Rocío Andújar Lapeña,&nbsp;Roberto Campana Prada,&nbsp;Gema Sevilla Toboso,&nbsp;Margarita Sánchez Molina","doi":"10.1002/fuce.202200194","DOIUrl":"10.1002/fuce.202200194","url":null,"abstract":"<div>\u0000 \u0000 <p>The electrochemical operation of membrane electrode assemblies (MEAs) with different Nafion/C composition (0%, 20%, 30%, 40%, and 50%) and the same ultralow platinum load (0.02 mg<sub>Pt</sub> cm<sup>−2</sup>) has been investigated. The electrodes were manufactured by depositing the catalytic ink, prepared with catalyst HiSPEC9100, onto the gas diffusion layers by wet powder spraying. MEA with 30% Nafion/C reached the highest power density (675 mW cm<sup>−2</sup>) and the lowest mass of Pt per power (0.059 g<sub>Pt</sub> kW<sup>−1</sup>) under H<sub>2</sub>/O<sub>2</sub> 2 bar gauge pressure, the last quotient being 1.7 time less than USDRIVE objective for 2025. The electrochemical functioning of current membrane-electrode setups is compared with an analogous series with thicker electrode catalytic layer prepared with a commercial catalyst with a lower percent of Pt/C. Scanning electron microscopy characterization analysis of catalytic layers prepared by wet spraying exhibited an ionomer homogeneous network.</p>\u0000 </div>","PeriodicalId":12566,"journal":{"name":"Fuel Cells","volume":"24 4","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141773502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fuel Cells
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1