Droplet-templating soft materials into structured bead-based aerogels with compartmentalized or welded configurations.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Materials Horizons Pub Date : 2025-02-28 DOI:10.1039/d4mh01896f
Shayan Ghasemi, Mahyar Panahi-Sarmad, Elnaz Erfanian, Tianyu Guo, Vahid Rad, Adel Jalaee, Gabriel Banvillet, E Johan Foster, Kam C Tam, Masoud Soroush, Feng Jiang, Orlando J Rojas, Milad Kamkar
{"title":"Droplet-templating soft materials into structured bead-based aerogels with compartmentalized or welded configurations.","authors":"Shayan Ghasemi, Mahyar Panahi-Sarmad, Elnaz Erfanian, Tianyu Guo, Vahid Rad, Adel Jalaee, Gabriel Banvillet, E Johan Foster, Kam C Tam, Masoud Soroush, Feng Jiang, Orlando J Rojas, Milad Kamkar","doi":"10.1039/d4mh01896f","DOIUrl":null,"url":null,"abstract":"<p><p>Achieving precise control over the composition and architecture of nanomaterial-based aerogels remains a significant challenge. Here, we introduce a droplet-templating approach to engineer ultra-lightweight aerogels <i>via</i> the interfacial co-assembly of nanoparticles-surfactants (NPSs) at polar/apolar liquid interfaces. This approach enables the creation of aerogels with tailored compartmentalized or welded bead architectures, exhibiting multilayer, gradient, and hybrid morphologies from a range of 1D and 2D nanomaterials. By precisely controlling evaporation and freeze-drying processes, we fabricate aerogels with customizable micro-domains, without requiring chemical binders. Our approach provides a platform for developing soft materials with tunable properties, paving a new path for applications in soft matter and aerogel engineering.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01896f","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving precise control over the composition and architecture of nanomaterial-based aerogels remains a significant challenge. Here, we introduce a droplet-templating approach to engineer ultra-lightweight aerogels via the interfacial co-assembly of nanoparticles-surfactants (NPSs) at polar/apolar liquid interfaces. This approach enables the creation of aerogels with tailored compartmentalized or welded bead architectures, exhibiting multilayer, gradient, and hybrid morphologies from a range of 1D and 2D nanomaterials. By precisely controlling evaporation and freeze-drying processes, we fabricate aerogels with customizable micro-domains, without requiring chemical binders. Our approach provides a platform for developing soft materials with tunable properties, paving a new path for applications in soft matter and aerogel engineering.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
期刊最新文献
Droplet-templating soft materials into structured bead-based aerogels with compartmentalized or welded configurations. Experimental and computational insights into CuS-Mg composites for high-performance p-type transparent conducting materials. Neuromorphic devices for electronic skin applications. Optimizing optical anisotropy in low-dimensional structures via intralayer hydrogen bonding modulation and anionic substitution. A linearly programmable strategy for polymer elastomer mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1