Mechanical Rejuvenation of Polylactide: Critical Role of Mobile Amorphous Phase.

IF 4.2 3区 化学 Q2 POLYMER SCIENCE Macromolecular Rapid Communications Pub Date : 2025-02-27 DOI:10.1002/marc.202401126
Shenying Sun, Wei Huang, Jian Zhou, Xuke Li, Peng Chen
{"title":"Mechanical Rejuvenation of Polylactide: Critical Role of Mobile Amorphous Phase.","authors":"Shenying Sun, Wei Huang, Jian Zhou, Xuke Li, Peng Chen","doi":"10.1002/marc.202401126","DOIUrl":null,"url":null,"abstract":"<p><p>Polylactide (PLA) becomes brittle shortly after physical aging, posing significant challenges for practical applications. This issue can be effectively overcome through a pre-melt-stretching process, known as mechanical rejuvenation. However, the underlying mechanisms remain poorly understood due to the intricate multilevel structures in pre-stretched PLA and their evolution during physical aging. Herein, PLA containing 12% D-isomer units is utilized as a model system to eliminate the influence of structures such as mesophase and crystals. The samples remain fully amorphous throughout the pre-stretching and subsequent aging processes. Notably, during physical aging, the pre-stretched samples retain their ductility, while the isotropic samples exhibit increased embrittlement. Thermal analysis is employed to elucidate the changes in the amorphous phase during aging. The results reveal the impact of the amorphous segmental mobility on the ductility change during aging, which is primarily governed by the fraction of mobile amorphous phase (X<sub>MAF</sub>), with a critical threshold determining the ductile-to-brittle transition. This work would shed light on the toughening of physically aged glassy polymers.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2401126"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202401126","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polylactide (PLA) becomes brittle shortly after physical aging, posing significant challenges for practical applications. This issue can be effectively overcome through a pre-melt-stretching process, known as mechanical rejuvenation. However, the underlying mechanisms remain poorly understood due to the intricate multilevel structures in pre-stretched PLA and their evolution during physical aging. Herein, PLA containing 12% D-isomer units is utilized as a model system to eliminate the influence of structures such as mesophase and crystals. The samples remain fully amorphous throughout the pre-stretching and subsequent aging processes. Notably, during physical aging, the pre-stretched samples retain their ductility, while the isotropic samples exhibit increased embrittlement. Thermal analysis is employed to elucidate the changes in the amorphous phase during aging. The results reveal the impact of the amorphous segmental mobility on the ductility change during aging, which is primarily governed by the fraction of mobile amorphous phase (XMAF), with a critical threshold determining the ductile-to-brittle transition. This work would shed light on the toughening of physically aged glassy polymers.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
EMpowerment of PArents in THe Intensive Care Questionnaire: Translation and Validation in Italian PICUs
IF 4.1 2区 医学Pediatric Critical Care MedicinePub Date : 2017-02-01 DOI: 10.1097/PCC.0000000000001031
A. Wolfler, A. Giannini, Martina Finistrella, I. Salvo, E. Calderini, G. Frasson, I. Dall’Oglio, Michela Di Furia, Rossella Iuzzolino, M. Musicco, J. Latour
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
期刊最新文献
Bio-Inspired, Zwitterionic Copolymers with Amphiphilic Character. Rose-Bengal-Tethered Polymer Encapsulant for Carbon-Nanohorn Conjugates: Theranostic Potential for Multimodal Imaging and Phototherapy. A Novel Synthesis Strategy for Poly(Arylene-Vinylene) Derivatives by Elemental Sulfur-Mediated Polyolefination. Divanillin Cross-Linked Recyclable Cellulose Networks. Microplasma-Induced Radical Polymerization for Green Elastic Polymer and Luminescent Nanocomposites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1