Application of Box-Behnken design to optimize the phosphorus removal from industrial wastewaters using magnetic nanoparticles.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES Environmental Science and Pollution Research Pub Date : 2025-02-28 DOI:10.1007/s11356-025-36152-6
Celso E D Cardoso, Joana C Almeida, João Rocha, Eduarda Pereira
{"title":"Application of Box-Behnken design to optimize the phosphorus removal from industrial wastewaters using magnetic nanoparticles.","authors":"Celso E D Cardoso, Joana C Almeida, João Rocha, Eduarda Pereira","doi":"10.1007/s11356-025-36152-6","DOIUrl":null,"url":null,"abstract":"<p><p>Phosphorus is essential for all living organisms and limits aquatic plant growth. Pulp mill effluents, particularly from Eucalyptus bleached kraft pulp mills, contain phosphorus concentrations that vary with operational conditions. This variability poses challenges for effective treatment and phosphorus removal. However, uncontrolled release of phosphorus-rich wastewaters causes eutrophication. This study focuses on optimizing phosphorus removal from such effluents using cobalt ferrite nanoparticles, with an emphasis on process optimization to address this variability. Minimizing phosphorus concentrations is crucial in wastewater engineering and surface water management. By employing design of experiments and response surface methodology, we aim to fine-tune the phosphorous removal process and pinpoint the key factors with the most significant impact. Optimal conditions for achieving over 90% removal from an effluent with 5 mg P/L were identified as a sorbent dose greater than 1.3 g/L and a pH range between 5 and 7, all within a contact time of only 15 min. For a contact time of 1 and 24 h, the conditions adjust to a sorbent dose greater than 0.97 and 0.83 g/L, respectively, with the pH range remaining the same. Our results highlight the effectiveness of cobalt ferrite nanoparticles as sorbents in the removal of phosphorus for water treatment purposes. This approach presents a sustainable and proficient strategy for phosphorus recovery from pulp mill effluents, thereby lessening environmental repercussions and offering a valuable resource for future use. This contributes to the maintenance of water quality and ecosystem preservation.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-36152-6","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphorus is essential for all living organisms and limits aquatic plant growth. Pulp mill effluents, particularly from Eucalyptus bleached kraft pulp mills, contain phosphorus concentrations that vary with operational conditions. This variability poses challenges for effective treatment and phosphorus removal. However, uncontrolled release of phosphorus-rich wastewaters causes eutrophication. This study focuses on optimizing phosphorus removal from such effluents using cobalt ferrite nanoparticles, with an emphasis on process optimization to address this variability. Minimizing phosphorus concentrations is crucial in wastewater engineering and surface water management. By employing design of experiments and response surface methodology, we aim to fine-tune the phosphorous removal process and pinpoint the key factors with the most significant impact. Optimal conditions for achieving over 90% removal from an effluent with 5 mg P/L were identified as a sorbent dose greater than 1.3 g/L and a pH range between 5 and 7, all within a contact time of only 15 min. For a contact time of 1 and 24 h, the conditions adjust to a sorbent dose greater than 0.97 and 0.83 g/L, respectively, with the pH range remaining the same. Our results highlight the effectiveness of cobalt ferrite nanoparticles as sorbents in the removal of phosphorus for water treatment purposes. This approach presents a sustainable and proficient strategy for phosphorus recovery from pulp mill effluents, thereby lessening environmental repercussions and offering a valuable resource for future use. This contributes to the maintenance of water quality and ecosystem preservation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用 Box-Behnken 设计优化利用磁性纳米颗粒去除工业废水中的磷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
期刊最新文献
Spatial and temporal variations of microplastics in the lower Chao Phraya River, Thailand: an investigation during the COVID-19 pandemic period. Application of Box-Behnken design to optimize the phosphorus removal from industrial wastewaters using magnetic nanoparticles. Comparison of three different zeolites to activate peroxymonosulfate for the degradation of the pharmaceutical ciprofloxacin in water. Environmental sustainability: challenges and solutions. Green triiron tetraoxide@Algae (Fe3O4@Algae) nanoparticles for highly efficient removal of lead (Pb2+), cadmium (Cd2+), and aluminum (Al3+) from contaminated water: an isothermal, kinetic, and thermodynamic study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1